
Operating Mesos-powered Infrastructures

Pierre Cheynier

@pierrecdn

Operations Engineer, SRE Division

October 27, 2017

Operating 600+ servers on 7 DCs @ Criteo : sharing some insights



Company 

2009 – GOING ABROAD

2005 - CREATION DATE 2013 – NASDAQ IPO

2016 - +1B REVENUE !

• 2,700 employees (600 R&D engineers), 30 offices

• 1.2B distinct users/month

• Billions of ads served & transactions analyzed / day

• 7 datacenters + 15 network PoPs

• 20K servers (Linux/Windows mix)

• 3M RPS at peak time

• Real Time Bidding: ~ 10 ms

• Hadoop: 171 PB storage (+600TB per day)



Transitioning… 

• Hardware : reducing the Total Cost of Ownership

• Filling racks on premises  fully populated cabinets, repeatable process

• Fully secured (RAID, 2 x power, ...) COTS  commodity hardware

• O/S : maintainability

• Windows  Linux

• Runtime : diversity

• .NET Framework  CoreCLR (.NET Core Runtime) & JVM

• Platform deployment : flexibility, self-service

• IT automation  Tasks/Job Orchestration



Transitioning… 

• Stable & Maintainable system => Simple & Modular



Why Mesos ?

• Small and Extensible project

• A highly-available distributed system kernel, abstracting and isolating 
resources in less than 250k LoC

• Concrete primitives and interfaces, extensibility through Modules

• Implementing industry standards (such as CNI, CSI & OCI soon)

• Self-sufficient

• Mesos Containerizer

• UCR

• Where are we ?

• Started a small PoC during 2015 S2

• 1.5 year later: 600 agents, 150+ production apps, 250K QPS

• 2 generalist frameworks, ML-oriented & GPU-based workloads coming.



The long journey of setting up production-grade infrastructures

• 1 - Automate everything

• 2 - Configure defensively

• 3 - Discovering services and more

• 4 - Provide visibility to the end-users

• 5 - Networking is hard



1 - Automate everything

• Chef: our all-purposes config management tool

• Automate everything:

• address hardware scale up/down operations in minutes.

• Choregraphie: perform complex ops using lock-based 
resource protection

• Reliability > CI pipelines: 

• perform tests in VMs

• deploy in preproduction environment



2 - Configure defensively

• Identify fault-domains
• Placement constraints

• Take care of user secrets
• Authenticate everything
• Encryption channel provided through asymmetric crypto & key distribution
• Mesos Secrets available now (1.4.0) - SecretResolver

• Enforce limits
• CPU: for predictability use --cgroups_enable_cfs
• Mem: turn off swap (hi OOM-killer !)
• Disk: turn on disk quotas / unbounded by default on Marathon / understand GC. 
• User: mandatory (forbid root usage and grant frameworks through Mesos ACL).

• Perform backups
• And try to restore ! (beware of API consistency / versioning)

•



3 - Discovering services and more

• Flat Service Discovery model

• Don’t forget legacy !

• Help managing the DC bootstrap case

• Fallback to the nearest DC using “prepared queries”

• Intra-DC communications : 1 network hop

• Consul API (DNS / HTTP)

• CSLB library embedded in Criteo SDK

• Consul as a DC, Services and State reference

• Tags and K/V used to store services metadatas

• Consul health-check as a general state reference

• Practical applications: automatically provision LBs, smooth 
transitions between legacy and Mesos.

•



4 - Provide visibility to the end-users

• Cultural changes
• App instances move continuously !

• Metrology & Alerting
• Collectd, prometheus_exporter, etc.
• Not well-known metrics, from mesos.proto :

• Networking: net_[rx|tx|tcp]*, 
[TrafficControl|Ip|Tcp|Udp]Statistics,  

• Disk I/O: CgroupInfo.Blkio.CFQ.Statistics

• Tracing: PerfStatistics (costly!)

• SLAs
• Transparency about platform footprint
• Report your ability to schedule – chaos monkey involved !

• Debugging / Tracing
• The Mesos I/O Switchboard: remotely attach/exec
• Introducing system tracing components such as LTTng



5 - Networking is hard

• “The network is reliable”

• The 8 fallacies of distributed computing (L. Peter Deutsch - 1994)

• Load-balancing

• Providing services such as: visibility, timeout profiles, sticky cookie, 
TLS...

• Use the new “seamless reloads” feature (1.8-dev2).

• net_cls cgroup : the simplest way to introduce basic QoS

• Noisy neighbours > which trade-off will you choose ?

•



Incidents…

• DC Outages

• Jul, 2017: “The site has been evacuated and the Fire Department 
has been notified. Every server basically got shutdown and 
restarted”.

• Disaster recovery scenarios

• Apr, 2017: “Marathon applications were deleted WW”

• Jun, 2017: “Zookeeper does not accept connections anymore, has 
been satured by Aurora, new task deployments are in pending state”

• Noisy neighbours

• “Network latencies on 1 instance increased a lot (average, 95pctl)”

• “In 1 cabinet row, switches backplanes are currently saturated”



What’s left to answer ?

• Isolation, isolation, isolation

• Network and I/O bandwidth as a first-class resource ?

• Latency critical apps: combine with cpu_set ?

• Efficiency

• Revocable resources for non-latency critical tasks (jobs) ?

• Quotas + Oversubscription ?

• Bin packing (= reclaim hardware … & electrical power !)

• Maintenance Primitives

• Anticipate more complex operations by reclaiming resources 
and not allocating new tasks.



Happy users !

• Providing support and sharing knowledge leads to great contributions



Do you want to know more ?

We’re hiring !

Thank you.


