

Masaki Kimura

<masaki.kimura.kz@hitachi.com>
Information & Telecommunication Systems Company
IT Platform Division Group
Hitachi, Ltd.

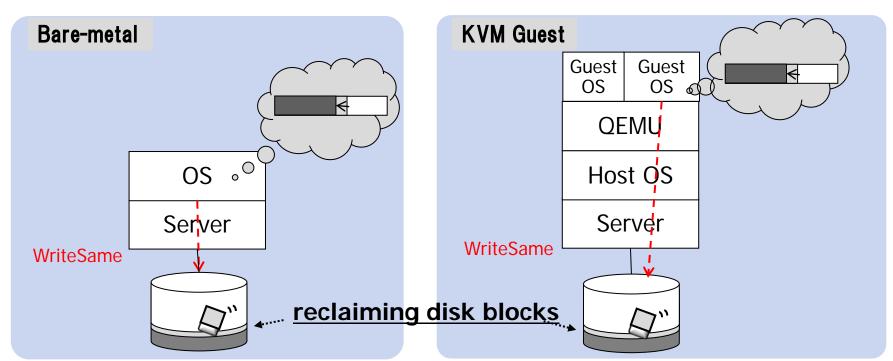
Human Dreams. Make IT Real.

Contents

- 1. Background (Use Cases and Requirements)
- 2. KVM features for guest SCSI commands
- 3. Current Status of these features
- 4. Summary
- 5. Future work

1. Background

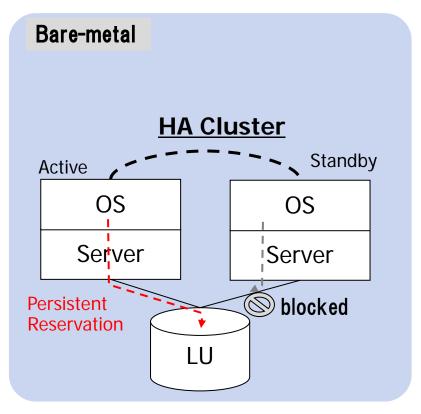
1-1. Background

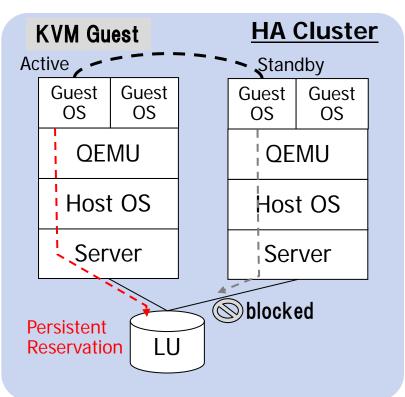

- Enterprise systems expect that virtualized environment has the same level of manageability, availability, and reliability achieved in bare-metal.
- For example:
 - 1. Thin-provisioned Storage for manageability,
 - 2. HA cluster for availability,
 - Backup server for reliability.
- In bare-metal environment, some of these requirements are achieved by using storage features, such as SCSI commands.
- In virtualized environment, the same use cases exists for guests.
 - → Issuing SCSI commands from guests are required.

Three use cases, thin-provisioned storage, HA cluster, and backup server will be explained in the next slides.

1-2. Use case #1: Thin-provisioned Storage

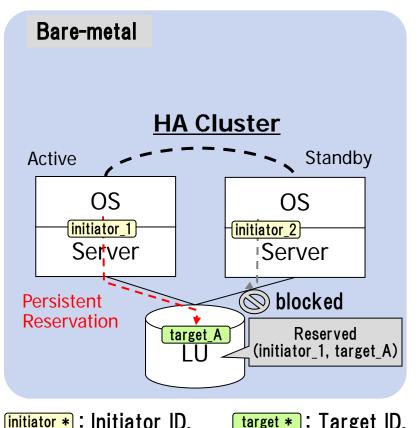
- Many types of enterprise storage have thin-provision function.
- For achievement of thin-provision, a disk block is allocated on access.
- However, once it is allocated, it can not be reclaimed by storage automatically even when the disk block becomes unused by OS.
- To reclaim unused disk block, OS needs to let storage know unused blocks by issuing WriteSame SCSI command.

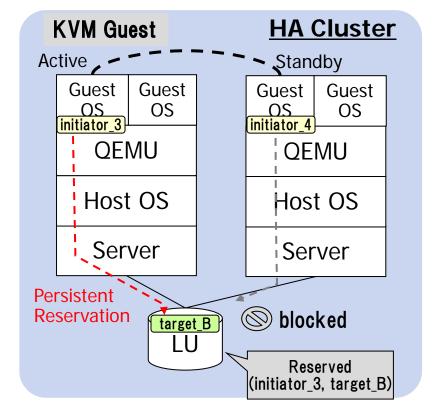

This use case exists for both bare-metal and KVM guests.


→ WriteSame is required to be issued to storage from guests.

1-3. Use Case #2: HA cluster (1/2)

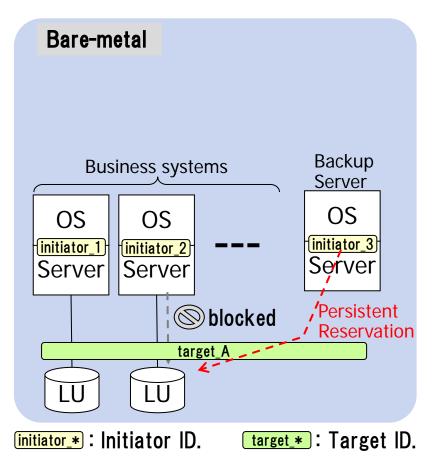
- To improve availability, HA cluster is commonly used in bare-metal.
- For HA cluster, Persistent Reservation SCSI command is generally used to guarantee an exclusive access from an active system.

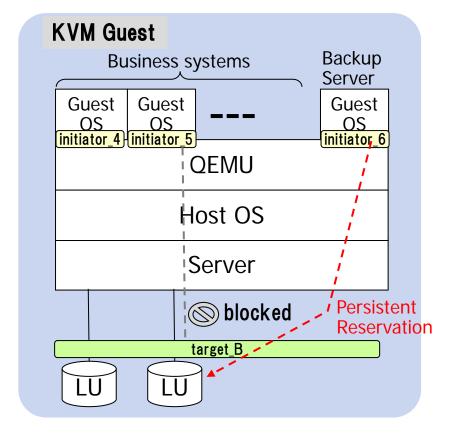

This use case also exists for KVM guests.


→ Persistent Reservation is required to be issued to storage from guest.

1-4. Use Case #2: HA cluster (2/2)

- Persistent Reservation is held by so-called I_T nexus, the combination of initiator ID and target ID.
- I/Os from standby system are blocked, because the I_T nexus is different.
- Therefore, <u>I_T nexus is required to be unique</u> for Persistent Reservation to work properly.





1-5. Use Case #3: Backup Server

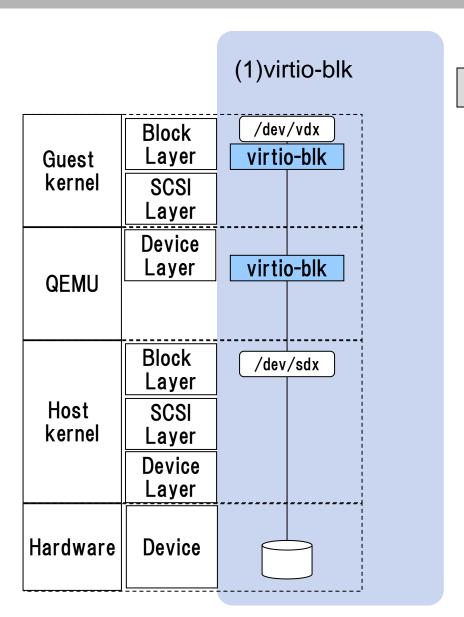
- Persistent Reservation is also used by some backup-server products to guarantee an exclusive access from a backup server on backup.
- Persistent Reservation to storage and unique I_T nexus are required by these products.

1-6. Summary of Requirements

- Requirements from the use cases:
 - Requirement #1: SCSI commands to storage from guests.
 - Thin-provisioned storage requires WriteSame to storage from guests.
 - HA cluster and backup server require Persistent Reservation to storage from guests.
 - Requirement #2: Unique initiator ID across guests.
 - HA cluster and backup server require I_T nexus to be unique.

2. KVM features for guest SCSI commands

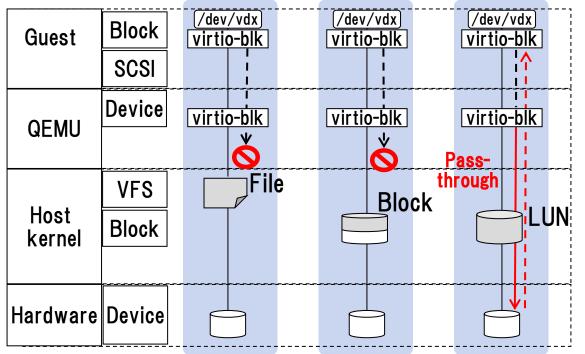
2-1. KVM features for guest disks



This presentation focuses on following three device types and their configurations.

#	Configuration						
#	Device Type		Initiator	Target	Backend		
1					File		
2	(1) virtio-blk		_	Device			
3				LUN			
4					File		
5			_	(a) qemu	Device		
6	(2) virtio 200	:			LUN		
7	(2) virtio-scsi			(b) 1 i o	block		
8			_	(b)lio	pscsi		
9			(c) libiscsi –		iSCSI storage		
10	(3) PCI device (a) Legac		_		PCI device		
11	assignment	(b) VF10	_	PCI device			

2-2. (1) virtio-blk (1/2)

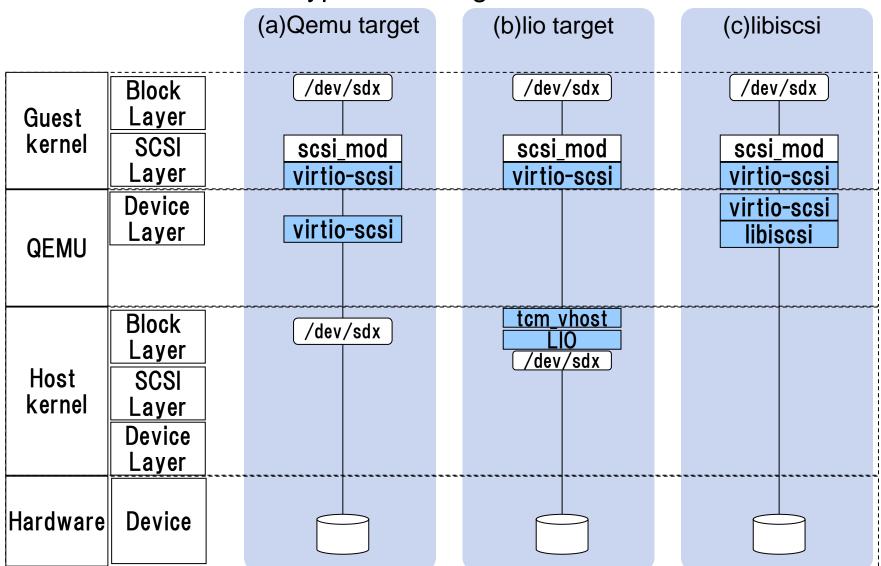

Characteristic

- Para-virtualized disk.
- Shown as /dev/vdX on Linux guests.
- Maximum number of disks is limited by maximum number of PCI devices (32).
- Improving performance with virtio-blk plane and bio-based I/O.

2-3. (1) virtio-blk (2/2)

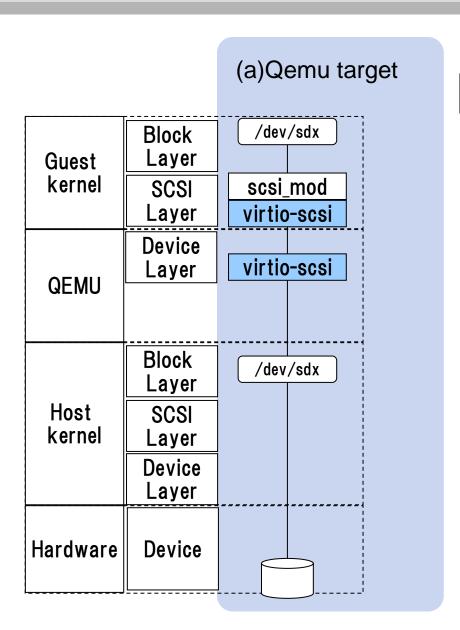
Configurations and how SCSI commands are handled.

SCSI Command Capability


- SCSI command from guest reaches to storage only when attached as LUN.

Backend	KVM Command Line	Libvirt XML	SCSI command
Disk (file)	-device virtio-blk-pci,scsi= off	<pre><disk device="disk" type="file"> <target bus="virtio" dev="vda"></target></disk></pre>	Not Supported
Disk (block)	-device virtio-blk-pci,scsi= off	<pre><disk device="disk" type="block"> <target bus="virtio" dev="vda"></target></disk></pre>	Not Supported
LUN	-device virtio-blk-pci,scsi= on	<pre><disk device="lun" type="block"> <target bus="virtio" dev="vda"></target></disk></pre>	Pass-through

2-4. (2) virtio-scsi



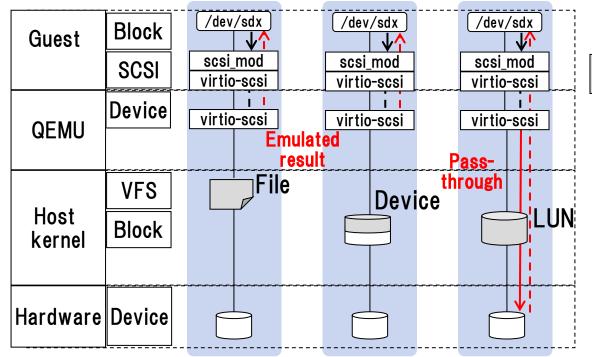
virtio-scsi has three types of configurations.

2-5. (2) virtio-scsi: (a) qemu target (1/2)

Characteristic

[virtio-scsi]

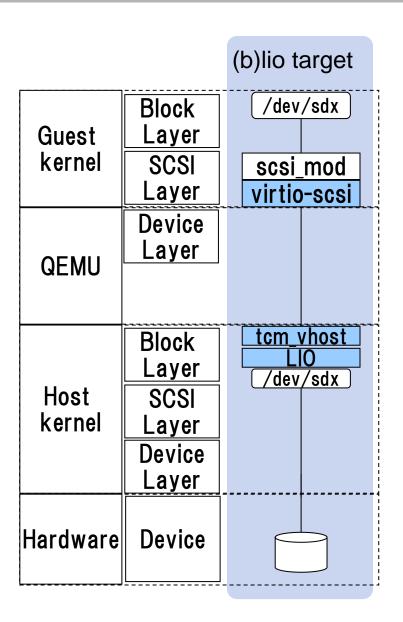
- Para-virtualized SCSI transport.
- Shown as /dev/sdX on Linux guests.


[Qemu target]

- User space target

2-6. (2) virtio-scsi (a) qemu-target (2/2)

Configurations and how SCSI commands are handled.


SCSI Command Capability

- SCSI command from guest reaches to storage only when attached as LUN.
- Emulated results return to guest when attached as file or device.

Backend	KVM Command Line	Libvirt XML	SCSI command
Disk (file)	-device scsi- hd	<pre><disk device="disk" type="file"> <target bus="scsi" dev="sda"></target></disk></pre>	Emulated
Disk (block)	-device scsi- hd	<pre><disk device="disk" type="block"> <target bus="scsi" dev="sda"></target></disk></pre>	Emulated
LUN	-device scsi- block	<pre><disk device="lun" type="block"> <target bus="scsi" dev="sda"></target></disk></pre>	Pass-through

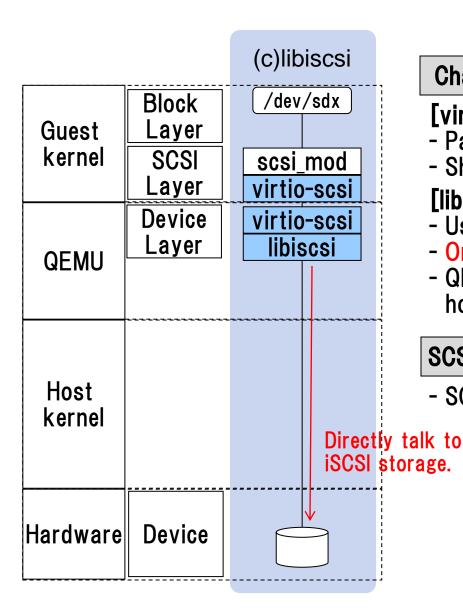
2-7. (2) virtio-scsi: (b) lio target

Characteristic

[virtio-scsi]

- Para-virtualized SCSI transport.
- Shown as /dev/sdX on Linux guests.

[lio target]


- Kernel space target.
- Using LIO (linux-iscsi.org) as backend.
- LIO supports following back-stores:
 - block
 - fileio
 - pscsi
 - ramdisk

SCSI Command Capability

Not yet evaluated.
 (pscsi is pass-through SCSI, therefore it is expected to work well.)

2-8. (2) virtio-scsi: (c) libiscsi

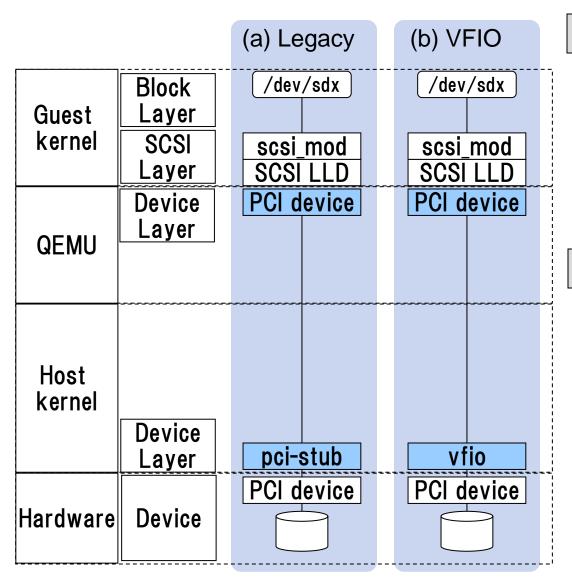
Characteristic

[virtio-scsi]

- Para-virtualized SCSI transport.
- Shown as /dev/sdX on Linux guests.

[libiscsi]

- User space iSCSI initiator.
- Only support iSCSI.
- QEMU directly talk to iSCSI storage, therefore host does not see guest disks.


SCSI Command Capability

- SCSI command from guest reaches to storage.

2-9. (3) PCI Device assignment

PCI Device assignment has two types:

Characteristic

- Assign PCI device to guests.
- Host PCI device is dedicated to one guest, therefore the number of guests is limited to the number of PCI devices (or their ports.)

SCSI Command Capability

- SCSI command from guest reaches to storage in both legacy and VFIO configurations.

2-10. Summary of SCSI command capability

		Whether guest					
#	Device	Туре	Initiator	Target	Backend	SCSI commands reach to storage	
1					File	No	
2	virtio-blk		_		Device	No	
3					LUN	Yes	
4					File	No	
5	virtio-scsi		_	qemu	Device	No	
6					LUN	Yes	
7					block	No	
8			- lio		pscsi	???	
9			libiscsi -		iSCSI storage	Yes	
10	PCI Device Legacy		_		PCI device	Yes	
11	assignment	VF10	-		PCI device	Yes	

In the next chapter, we will see SCSI command capabilities deeper only with configurations marked "Yes" in above table.

3. Current Status of these features

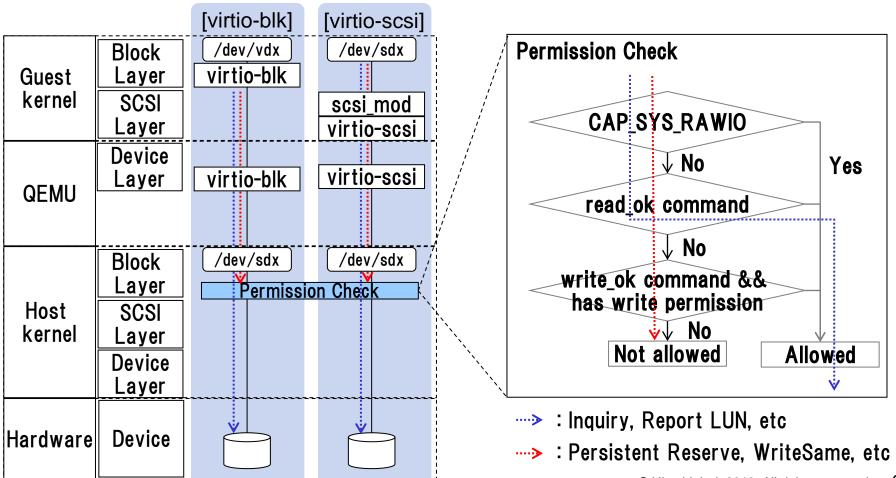
3-1. Evaluation Item and Configuration

Evaluation Items:

#	Evaluation Item	Remarks		
(a)	Whether SCSI commands reach to storage.	Requirement #1		
(b)	Whether unique initiator ID is assigned.	Requirement #2		
(c)	Whether SCSI commands return proper results.	_		

Configurations:

#	Device Type		Initiator Target		Backend	
1	virtio-blk		_		LUN	
2	virtio-scsi		_	qemu	LUN	
3			libiscsi	_	iSCSI storage	
4	PCI Device Legacy		_		PCI device	
5	assignment	signment VFIO			PCI device	


From next slide, I will share what problems remain in which configurations.

3-2. (a) Whether SCSI commands reach to storage(1/4)

Problem

- There is a permission check in host kernel, when guest SCSI commands is issued via virtio-blk or virtio-scsi with gemu target.
- Libvirt-managed KVM guests run as gemu user, who lacks CAP SYS RAWIO.
- → Some SCSI commands, such as **Persistent Reserve and Write Same**, are blocked by this check unless KVM is running as root user.

3-3. (a) Whether SCSI commands reach to storage(2/4)

To solve this issue, following patches have been submitted.

Subject : [PATCH v3 0/2] add per-device sysfs knob to enable

unrestricted, unprivileged SG_IO

Date: November 13, 2012

Committer: Paolo Bonzini

URL : https://lkml.org/lkml/2012/11/13/440

Subject : [PATCH 00/13] Corrections and customization of the SG_IO

command whitelist (CVE-2012-4542)

Date : January 24, 2013

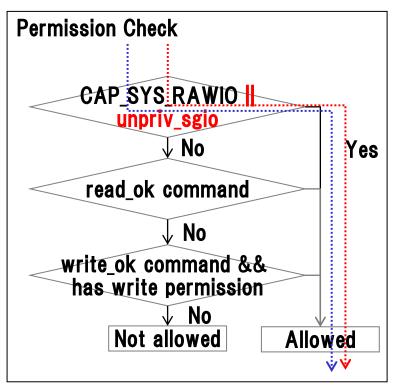
Committer: Paolo Bonzini

URL : https://lkml.org/lkml/2013/1/24/279

Subject : [PATCH v3 part2] Add per-device sysfs knob to enable

unrestricted, unprivileged SG_IO

Date : May 23, 2013 Committer: Paolo Bonzini


URL: https://lkml.org/lkml/2013/5/23/294

However, neither of them has been merged yet.

3-4. (a) Whether SCSI commands reach to storage(3/4)

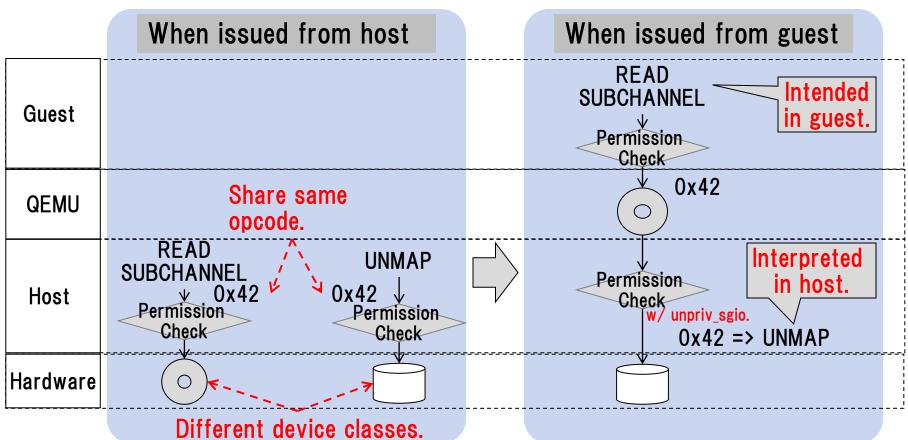
Concept of these patches is to introduce a flag, unpriv_sgio, to allow non-root users to issue SCSI commands.

* Kernel side interface (Not merged yet.)

```
# cat /sys/block/sda/queue/unpriv_sgio
0
# echo 1 > /sys/block/sda/queue/unpriv_sgio
(*) Unpriv_sgio flag can be set per disk.
```

....>: Inquiry, Report LUN, etc

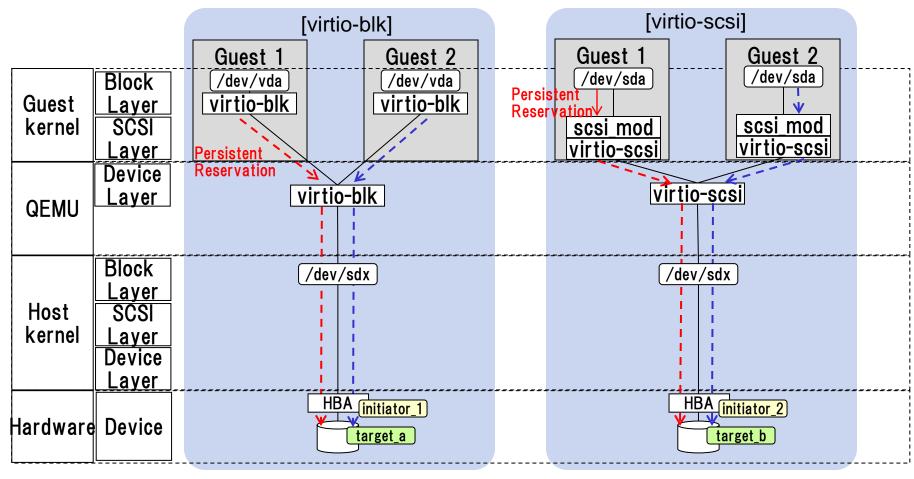
---> : Persistent Reserve, WriteSame, etc


If this kernel patch is merged, KVM guest running as gemu user will be able to configure to issue any SCSI commands to storages.

3-5. (a) Whether SCSI commands reach to storage(4/4)

Why these patches have not been merged yet?

→ Still under discussion on how to avoid opcodes-overlap problem.

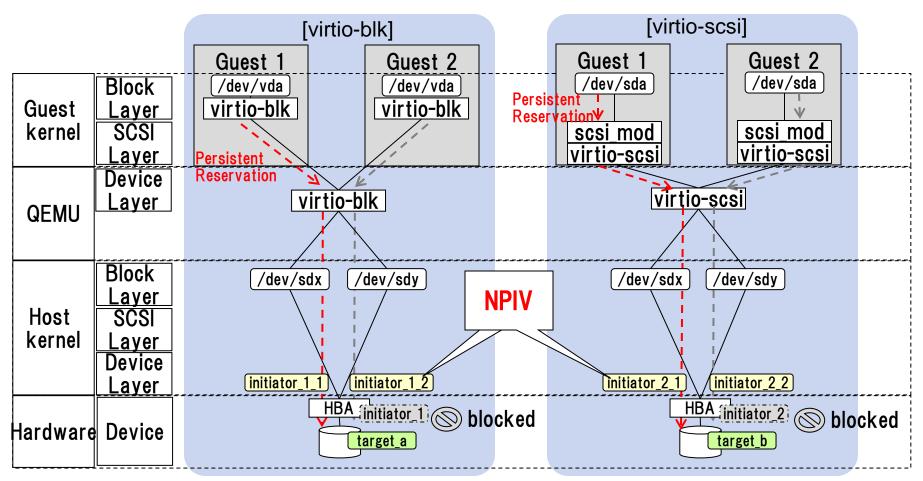

[Problem]: Destructive commands might pass-throughed to the host from guests. [Implementation]: Split permission check by device class (*1) or Introduce per-device filter w/o unpriv_sgio (*2)

3-6. (b) Whether unique initiator ID is assigned(1/3)

Problem

When both guest1 and guest2 are on the same host and use the same HBA, they share the same initiator ID. (virtio-blk or vitio-scsi w/ qemu target)

<u>initiator</u>*: Initiator ID. <u>target</u>*: Target ID.

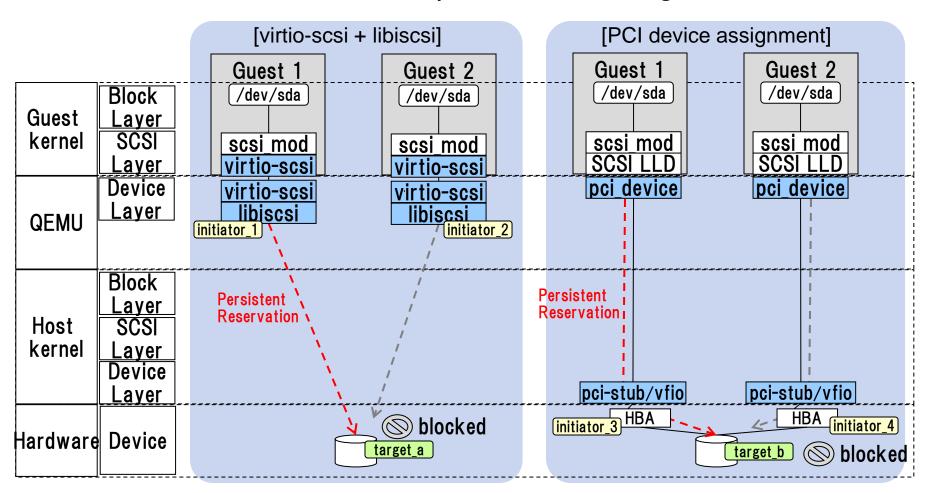

→ In such a condition, exclusive access is not guaranteed.

3-7. (b) Whether unique initiator ID is assigned(2/3)

Solution

<u>With NPIV</u> (N-Port ID Virtualization), virtio-blk and vitio-scsi w/ qemu target can assign unique initiator ID.

(initiator_*): Initiator ID.

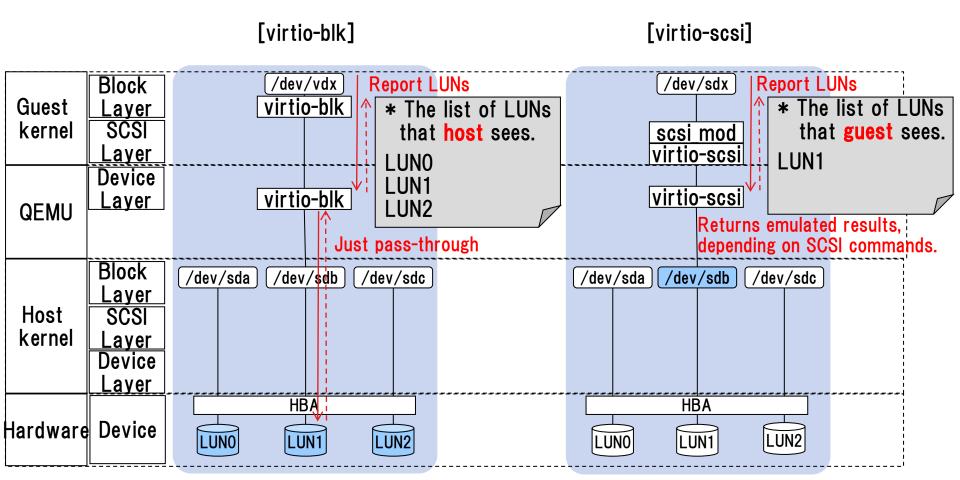

target_*: Target ID.

3-8. (b) Whether unique initiator ID is assigned(3/3)

FYI

With libiscsi or PCI device assignment, exclusive access is guaranteed, because initiator IDs are unique with these configurations.

initiator_* : Initiator ID.


target_*: Target ID.

3-9. (c) Whether SCSI commands return proper results

Problem

With virtio-blk, Report LUNs returns the list of LUNs including LUNs which are not assigned to the guest.

→ Virtio-blk needs emulation functions to return proper results for particular SCSI commands, such as Report LUNs.

4. Summary

4. Summary

- Enterprise system requires SCSI commands in virtualized environments.
- KVM has some configurations which can issue SCSI commands to storage from guests, however each configuration has some restrictions.

			SCSI command				Unique	
#	Configur.	ation	Persistent Reservation	Write Same	Inquiry	Report LUNs	WWN	Restriction
1	virtio-blk	_	No	No	Yes	No	Yes	Requires NPIV for unique WWN.
2	virtio-scsi	qemu	No	No	Yes	Yes	Yes	Requires NPIV for unique WWN.
3		libiscsi	Yes	Yes	Yes	Yes	Yes	iSCSI only.
4	PCI Device assignment	Legacy	Yes	Yes	Yes	Yes	Yes	Max number of guests is
5		VF10	Yes	Yes	Yes	Yes	Yes	limited by the number of HBA ports.

: Already available.

Patch exists, but not merged yet.

: No patch, but could be fixed.

5. Future Work

5. Future work

- 1. To allow qemu user to issue Persistent Reservation and WriteSame, proper permission check in host kernel is needed.
- 2. To make Report LUNs return proper results with virtio-blk, an emulation function for Report LUNs is needed.
- To make SCSI command capability of virtio-scsi w/ lio target clear, evaluation is needed for virtio-scsi w/ lio target.

Questions?

END

Better Utilization of Storage Features from KVM Guest via virtio-scsi

LinuxCon North America

Masaki Kimura

<masaki.kimura.kz@hitachi.com>

Information & Telecommunication Systems Company IT Platform Division Group

Hitachi Ltd.

Trademarks

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Human Dreams. Make IT Real.

We will launch innovations that make people's dreams come true through IT, through control technology, and through social infrastructure systems.

HITACHI Inspire the Next