

Linux in a Light Bulb

How far are we on tinification?

Pieter Smith Philips Lighting

The humble light bulb

Most under-appreciated appliance in your home

A light bulb is...

- Ubiquitous
- Used daily
- Largely unnoticed
 - Unless it is *broken*

Why connect a light bulb?

Affects your biology

Embedded Linux Conference Europe

Affects your biology

- Circadian rhythm.
- Treatment of sleep disorders

Affects your mood

- Ambiance creation
- Entertainment

Affects perception of safety / security

Soft security

Gentle reminders

Alarm clock Door bell Weather status

Tunability

Connecting things

- Traditional approaches:
 - Add a gateway
 - Simple nodes (E.g. Zigbee)
 - Get a bigger SoC
 - Direct IPv4/6 connection to internet
- Not what SoC vendors are advocating
 - With some exceptions

SoC vendors

- Pushing cost / feature
 - Driven by functionality
 - E.g: WiFi @ +\$1 (BOM)
 - Networking stack in on-die ROM
 - RAM / NOR secondary

SoC vendors

- NOR flash
 - Some vendors moving NOR off-die
 - Multi-channel SPI NOR
 - XIP via smart peripheral + instruction cache
- RAM
 - Slow to increase

Internet of "broken" things

- Proprietary stacks
 - Not open to public scrutiny
- Security
 - RAM patching of ROM stacks
 - RAM and NOR flash needs to be reserved
 - Lack of liability + cost pressure
 - Security is a **process** not a state
 - SoC vendors traditionally slow to respond

Why Linux is better?

- Best networking stack
- Best driver support
- Huge test-surface
- Developer mind-share
- Open-source (Auditability)
- Security process

Challenges: Price point

- Samsung Galaxy S6 @ €570
 - SoC + RAM + FLASH @ €73
 - Easily runs Linux
- Home router @ €100
 - SoC + RAM + FLASH @ €10
- Connected LED light bulb
 - Color @ €60
 - White @ €30

Challenges: Thermal design

- Internals run at **100** °C when $T_A = 40$ °C
 - 10 W rating (LEDs + Power electronics)
 - Small housing
- The chosen SoC must:
 - Operate @ 125 °C
 - Have low power consumption
 - Don't generate *more* heat

What do we need from Linux?

- Tiny size:
 - Small SoC

A brief history on kernel size

Linux on a *floppy*-disc:

- 2001: v2.2.19 @ 977KB compressed
- 2004: v2.4.27 @ 797KB compressed
- 2004: v2.6.8 @ 1073KB compressed

A brief history on kernel size

- 2001: v2.2.19 @ 977KB compressed
- 2004: v2.4.27 @ 797KB compressed
- 2004: v2.6.8 @ 1073KB compressed

- 2015: v4.2 @ 5.8 MB compressed (defconfig)
 - Not an honest comparison

Possible causes for kernel bloat

- (Intentionally) prioritize developer efficiency.
- Unnecessary / badly designed abstractions.
- Code duplication.
- Unused feature accretion.

How about the tiny use-case

- defconfig not so useful for tiny systems
- Let's compare history of tiny configs

Tiny mainline kernel

• Create .config template with only:

```
CONFIG_EMBEDDED=y
CONFIG_EXPERT=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_KERNEL_XZ=y
CONFIG_OPTIMIZE_INLINING=y
CONFIG_SLOB=y
CONFIG_NOHIGHMEM=y
```

• Run:

```
make KCONFIG_ALLCONFIG=${path_to_above} allnoconfig
make
```


vmlinux dissected

.text

- Constants and code
- Can remain in directly addressable FLASH

.data

- Initialized variables
- Has to be copied from FLASH to RAM

.bss

- Uninitialized data
- Only occupies RAM

How much RAM and FLASH?

- For XIP (Execute in-place):
 - .text + .data => FLASH
 - .bss + .data => RAM
- For compressed kernel image:
 - bzImage => FLASH
 - .bss + .data + .text => RAM

XIP versus Compressed Image

- XIP:
 - Saves RAM at the expense of FLASH
 - FLASH must be directly addressable by CPU
- bzImage:
 - Saves FLASH at the expense of RAM
 - No special addressability needs for FLASH

A brief history of the kernel weight-watchers

• Linux yo-yo diets

Enter linux-tiny

- 2003: Started by Matt Mackall
 - First patch-set for v2.6.0
- 2005/2006: CELF sponsorship
 - Top 17 patches mainlined

Dither linux-tiny

- 2006: Mostly abandoned
- 2007: Revived by CELF
 - Michael Opdenacker volunteers
 - http://elinux.org/Linux_Tiny
 - http://elinux.org/Kernel_Size_Tuning_Guide

Wither linux-tiny

- 2007: Last patch release @ v2.6.23
- 2008: Focus only on mainlining
 - Most promising (51) patches only
- 2008: Mailing-list archive ends
- Today: 2 / 51 patches mainlined

Bloatwatch

- 2006: Matt Mackall
 - Written at CELF as size regression tool
- Today https://www.selenic.com/bloatwatch/:

"This project has been discontinued due to lack of cooperation from kernel.org admins."

Enter Linux kernel tinification

- 2014: Josh Triplett
 - Call for arms at ELCE 2014
- Topics:
 - Making more of Linux *optional* (E.g. perf)
 - Link-time optimization
 - Automatic syscall elimination
 - Mainline OpenWRT tinification patches
 - GCC improvements for size reduction

Linux kernel tinification

- v3.18 merge window
 - Maintainer gripes
 - Merge conflicts
- Let things cool down:
 - Skip v3.18
 - Retry at v3.19

Dither Linux kernel tinification

• So Josh just has to wait 60+ days, right?

Dither Linux kernel tinification

- So Josh just has to wait 60+ days, right?
- Day-job
 - Chrome OS Architect @ Intel
- Other cool projects
 - clonefd
 - BITS
 - Both presented at LinuxCon 2015
- Mainlining stalled

Not so glum...

- Some patches mainlined:
 - E.g. fadvise() / madvise() now optional
- Number of patches posted for review
- Tools to hunt for bloat are getting better

Comparison with PREEMPT_RT

- 2004: First patch-set in by Ingo Molnár
- 2004: Thomas Gleixner picks up top of tree
- Stable picked up by Steve Rostedt

PREEMPT_RT

- Parts with general value mainlined
- RT-specific parts require nurturing into mainline
 - Rewrites
 - Show non-RT value
 - While solving RT problems
- Effort already > 10 years and still going strong
 - Real-Time Linux Collaborative Project

How should we proceed?

- Have patience
- Coordinate efforts
 - Consider partnering up with other tiny use-cases

How should we proceed?

- Have patience
- Coordinate efforts
 - Consider partnering up with other tiny use-cases
- Tips from Linus Torvalds and Thomas Gleixner:
 - Improve existing code
 - Demonstrate mainline value first
 - Slip stuff in in small increments / nicely disguised Trojan horses
 - Sell crazy stuff using non-crazy arguments

Improved tinification approach: An example

Assisted Link-time Optimization

- Remove redundant symbols from ELF's
 - Identify exported symbols not needed by compiled modules
 - Analyze user-space for syscall dependencies
- Let link-time optimization remove the rest
- Kernel work
 - Fix things that break the above:
 - E.g. Implicit / unneeded dependencies (General quality)

Back to the connected light-bulb

My roadmap

The set-up

- Beaglebone Black
 - Tiny Linux kernel
 - Tiny Userspace
 - Connected application
- Lamp
 - Power electronics
 - LED's
 - PWM

The application

• Something ELCE doesn't yet know they absolutely **NEED**

• The trivia-bulb

- Self-hosted web trivia
- Technicolor effects

Let's hack a trivia-bulb

git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git checkout v4.2.3

make tinyconfig

make ARCH=arm CROSS COMPILE=arm-buildroot-linux-uclibcgnueabihf-

From tinyconfig to something useful

config	zImage	RAMO
tinyconfig	284 KB	Ϋ́́Υ KB
+mm	329 KB	865 KB
+thumb2 kernel	329 KB 433 KB	759 KB
+networking	563 KB	1012 KB
+initramfs	571 48	1022 KB
+SoC (AM33XX)	GOO KB	1227 KB
+ethernet/edma/phy drivers	679 KB	1264 KB
+tty/serial drivers	783 KB	1476 KB

Linux in a Light Bulb How far are we on Tinification? Linux inside

Complications (Challenges)

- Kernel does not boot
 - Goes quiet after u-boot handover
 - Early printk does not help
 - omap2plus_defconfig doesn't either
- First get it working
 - Back to buildroot defaults
 - Vendor kernel: git://git.ti.com/ti-linux-kernel/ti-linux-kernel.git
 - Config: board/beaglebone/linux-3.12.config

Getting it working

- Great: Buildroot default works
- Strip out all we don't need
- Subtle dependencies:
 - Serial port needs RTC + watchdog to function
- Non-explicit configuration dependencies
- Large static RAM instantiations in kernel/lockdep.c:
 - lock_classes: 2.1 MB
 - stack_traces: 1.0 MB

How about userspace?

- Single ELF binary to replace init
 - Implements trivia application
 - Handshake with light-bulb and drive PWM's
- Statically linked:
 - Onion web-server library: https://github.com/davidmoreno/onion
 - Uclibe (Not always allowed)

Results are hideous

config	zImage	RAM
trivia bulb BSP	1.7 MB	8.6 MB

But this is a work in progress With a roadmap ending in 20xx

Most importantly: This is an example of what you might run into

Next steps

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
cd linux

```
git remote add linux-next \
```

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git

git fetch linux-next

```
git fetch --tags linux-next
```

```
# Get it working / fix stuff
```

```
git commit
git format-patch
git send-email
```


Next steps

- Switch to a Cortex-M3/4/7 development kit
- Rinse and repeat

Please participate

- Connect your smart device to lfevents
- Open your web-browser
- Answer all questions
 - The first **est** wins

10.200.66.18

References

- Sources and work associated with this presentation
 - https://github.com/smipi1/elce2015
- Linux tiny
 - http://events.linuxfoundation.org/sites/events/files/slides/tiny.pdf
 - https://lwn.net/Articles/608945/
 - http://elinux.org/images/5/5c/Linux-tiny-revival-jamboree16.pdf
 - http://lwn.net/Articles/63516/
 - http://elinux.org/Linux_Tiny_Patch_Details
- Linux tinification effort
 - https://tiny.wiki.kernel.org/start
 - https://lwn.net/Articles/608945/
- Size tuning
 - http://elinux.org/index.php?title=Kernel_Size_Tuning_Guide
- Tips
 - https://lwn.net/Articles/370998/

Acknowledgements

- Josh Triplett
- Thomas Gleixner
- George Yianni
- Adriaan van den Brand
- Hue development team @ Philips Lighting

