

Reconfigurable Computing Architecture for Linux

Vince Bridgers & Yves Vandervennet

October 13th, 2016

Intel Corporation

- Brief Introduction to Heterogeneous Computing
- Broad range of Systems Structures
- Some interesting use cases
- Heterogeneous Computing Architecture for Linux

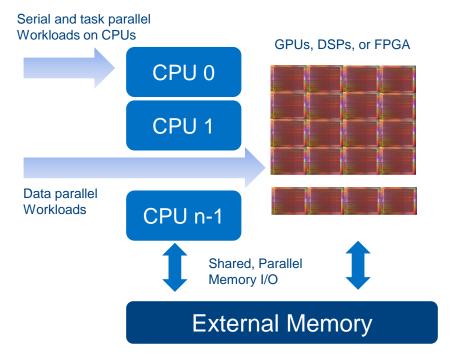
The Programmer's Challenge ...

"The way the processor industry is going, is to add more and more cores, but nobody knows how to program those things. I mean, two yeah; four not really; eight, forget it." - Steve Jobs

Objectives - Define Reconfigurable Compute Architecture for Linux

- Use Open Source to define and develop a reference implementation/platform encouraging collaboration and innovation
 - Application developers and user will have a consistent experience using these tools and using Linux as the Operating System platform
 - Example: in-kernel FPGA manager framework
- Accelerate adoption of offload technologies in embedded, datacenter, cloud, and embedded systems, providing good developer and user experiences
- Define the interfaces such vendor specific innovations can be implemented in User Mode applications the kernel bits can be thought of as plumbing.
- Support as many offload technologies and system types as possible.

Heterogeneous System Architecture Review



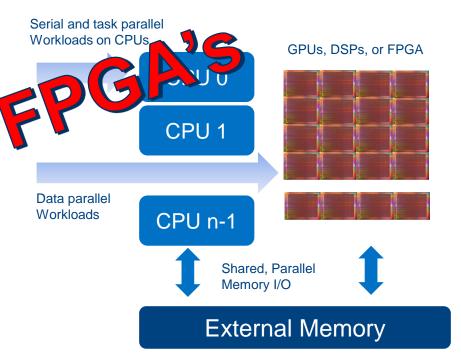
Reconfigurable Computing

- Takes advantage of CPUs for serial and task parallel workloads.
- CPUs can be any architecture (x86, ARM, etc)
- Takes advantages of computing elements that are good at data parallel workloads.

Computing elements

- Can be GPUs, DSPs, or FPGA
- Interconnect to computing elements can be PCIe, AXI, etc
- The "reconfigurable" part comes in since elements can be re-provisioned to solve particular problems based on software, firmware, or synthesized logic.

Heterogeneous System Architecture Review



Reconfigurable Computing

- Takes advantage of CPUs for serial and task parallel workloads.
- CPUs can be any architecture (x86, ARM, etc)
- Takes advantages of computing elements that, are good at data parallel workloads. 15:

Computing elements

- Can be GPUs, DSP
- Interconnect to computing elements can be PCIe. AXI. etc
- The "reconfigurable" part comes in since • elements can be re-provisioned to solve particular problems based on software, firmware, or synthesized logic.

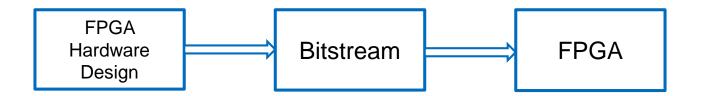
Computing elements: FPGA's

FPGA = Field Programmable Gate Array

- Array of programmable logic blocks, aka Fabric
 - Generic elements providing latches/flip-flops and gates
 - Specialized elements like multipliers, transceivers
- Designed to be configured after manufacturing
 - HDL's are used to describe the HW functions
 - HDL is compiled to a bit stream
- A Bit Stream is used to program the FPGA
 - Typically, configured at power-on
 - Means of Configuration examples: from flash, over PCIe

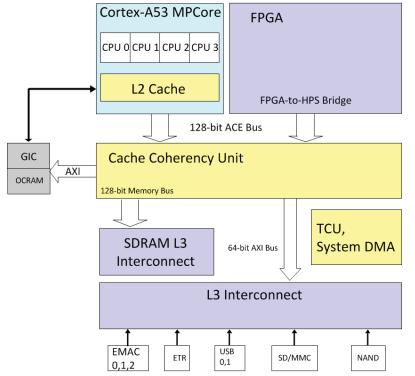
Computing elements: FPGA's (cont'd)

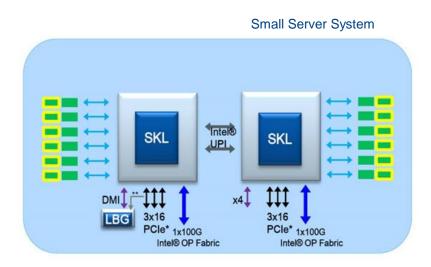
FPGA = Field Programmable Gate Array


- Full reconfiguration
 - The entire FPGA is reprogrammed, functions and I/O
- Partial reconfiguration
 - A limited area of the FPGA is reprogrammed

Computing elements: FPGA's (cont'd)

Typical Workflow:

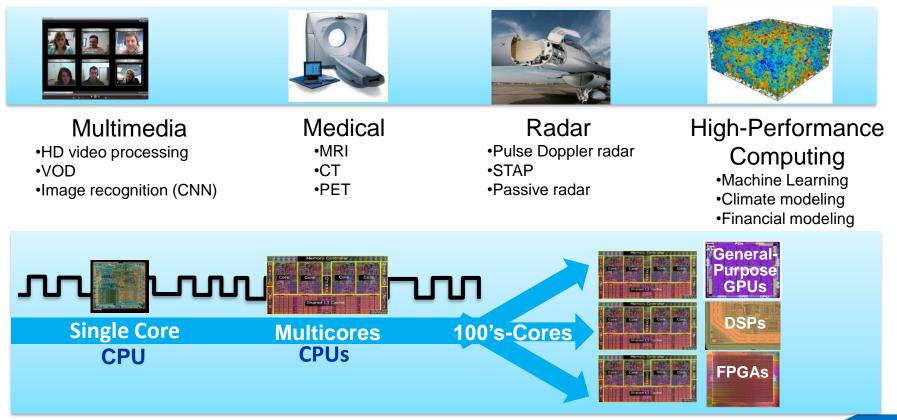



Example of use cases:

- Industrial: motor control, Industrial Ethernet
- Multimedia/Broadcast: video/image processing
- Telecommunication: Ethernet switches, packet process offload
- HPC: search engine acceleration, complex acceleration algorithms

Typical System Structures – Embedded Systems, Client/Server Systems

Embedded System



Intel Corporation

(inte

Reconfigurable Computing Use Cases

(inte

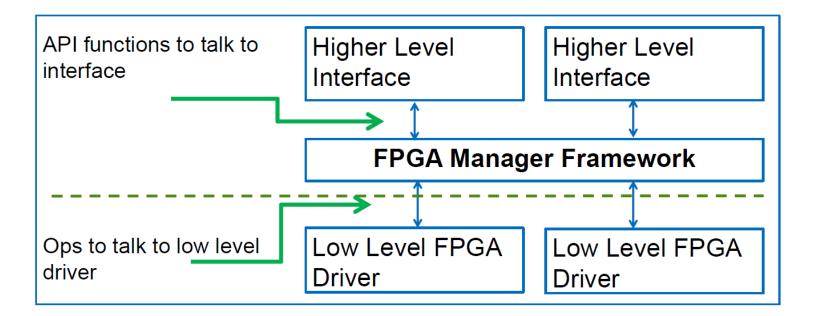
Existing Technologies supporting Reconfigurable Computing

An important component to support reconfigurable computing are the software tools and development flow supporting Reconfigurable Computing.

Linux Kernel FPGA Manager

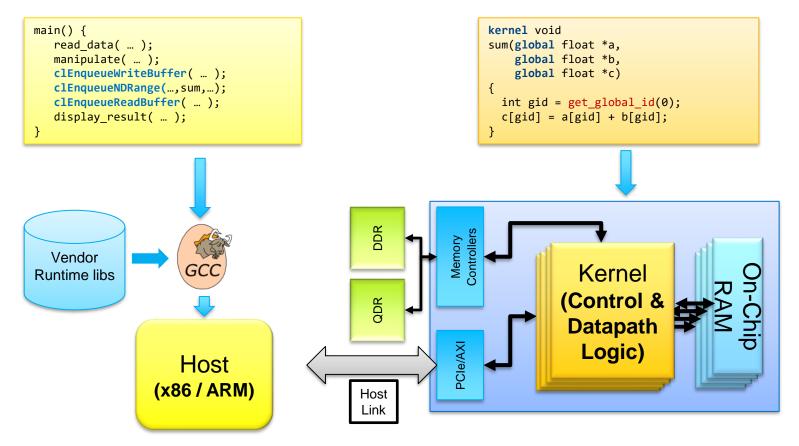
• A starting point for FPGA programming and reconfiguration in embedded systems

OpenCL


- OpenCL is a tool to develop complete software applications that leverage offload elements as accelerators
- OpenCL targets GPUs, CPUs, and FPGAs to partition task parallel and data parallel workloads across available resources.
- Most implementations today are vendor specific and are "vertical" implementations with no standardization of OS plumbing.

High Level Synthesis

• An important piece of the complete puzzle for reconfigurable computing, but not that important for today's discussion.



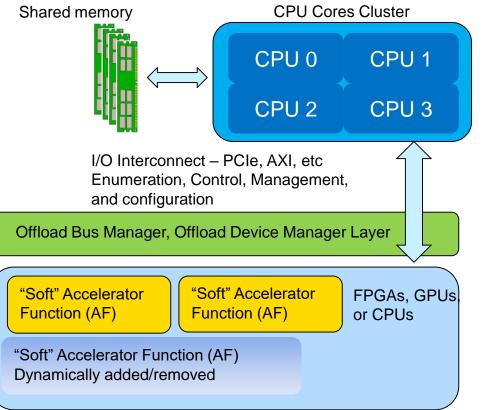
The Linux Kernel FPGA Manager Framework

Today's OpenCL Programming/Development Flow

Intel Corporation

ínte

Reconfigurable Computing – Some Definitions


"CPU Cluster" – The group of CPUs running the Linux operating system.

"Accelerator Function (AF)" – A virtual device, created by programming a portion of the FPGA or one or more GPUs or CPUs.

"I/O Interconnect" – The technology used to attach the FPGAs, GPUs, or CPUs to the general purpose CPU cluster.

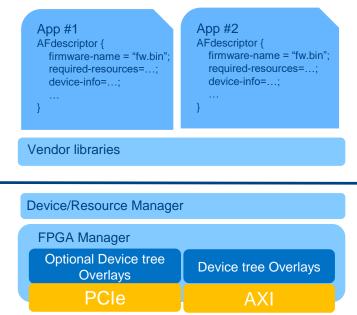
"Dynamic Insertion/Removal" – The process of adding/removing a "Soft Device" by programming the FPGA, GPUs, or CPUs.

"Resource Rebalancing" – The process of reallocating FPGA, GPU, or CPU resources by removing and reinserting "Soft Devices" to better use resources if needed.

Management Actions

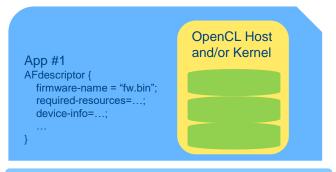
- AFs and Programmable Device Resource Manager
 - Programmable devices have a finite mapped MMIO window and interrupts
 - AFs require certain amount of MMIO window and interrupts
- Insert/Remove/Suspend/Resume AF
 - AFs can be inserted, removed, suspended and resumed
- AF Eviction & Migration
 - AF may need to be forcefully evicted for higher priority AF, and could be "resumed" at some point in the future.
 - An AF may be migrated from one Programmable Device to another, which could be seen as an eviction from one device and insertion into another.
- Programmable Device Rebalance and Reconfiguration
 - As evictions and insertions occur, resources may need to be rebalanced.
- Miscellaneous Policy Management
 - AF priorities, affinity settings for processor affinity and physical I/Os.

(intel)


Device Discovery, Enumeration, Management

- PCIe and AXI are compared for Reconfigurable Computing Framework
- PCI Express
 - Used in Client/Server Systems for I/O Interconnects
 - Architecture supports management, configuration and discovery
- Advanced eXtensible Interface (AXI)
 - Used heavily in embedded systems using ARM processors and peripherals
 - No architectural support for device discovery kernel uses device tree for static resource assignment and device discovery
- Framework should support these two types of I/O interconnects
 - Referred to as Discoverable and Non-discoverable.
- For this presentation, we focus specifically on
 - PCle
 - AXI

Device Example with PCIe, AXI using Device Tree Overlays


- Applications describe required resources in descriptor lists
 - Partial or complete configuration
 - I/O Resources, Interrupts (if any) required
 - Class of device (network, storage)
 - Transceivers, I/O pins required, etc.
 - Policies for configuration
- AF Descriptors are compiled to Device Tree Overlays
- Device Tree Overlays may be used for Non-discoverable interconnects (AXI for example). OF/ACPI.
- Device/Resource Manager finds matching FPGA with required attributes.
- FPGA Manager makes use of discoverable and nondiscoverable interconnects.

Intel Corporation

Device Example using OpenCL

- Developer produces OpenCL host/kernel bundle using normal development process and tools.
 - OpenCL bundle is packaged with Application.
 - Vendor libraries recognize application as having an OpenCL bundle.
 - All described through descriptor lists
- AF Descriptors are compiled to Device Tree Overlays
- Device Tree Overlays may be used for Nondiscoverable interconnects (AXI for example)
- Device/Resource Manager finds matching FPGA with required attributes.
- FPGA Manager makes use of discoverable and non-discoverable interconnects.

Vendor libraries w/ OpenCL

Device/Resource Manager	
FPGA Manager	
Optional Device tree Overlays	Device tree Overlays
PCIe	AXI

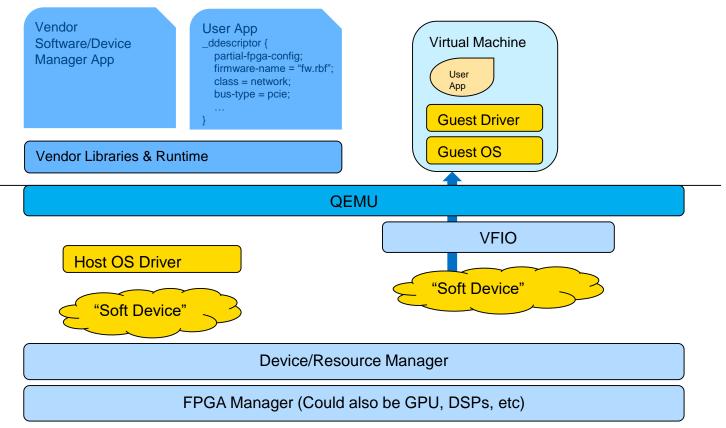
AF Descriptors

AF Descriptors contain information about the Acceleration Function required for the framework to instantiate the device.

- For each offload device needed {
 - Reference to FPGA program binary (the bitstream)
 - Expresses constraints (FPGA family, special resources, pins, etc)
 - Policy (Priority request, affinity, proximity CPU-FPGA interconnect)
 - List of devices (soft device, accelerator, memory map aperture, IRQ's, bindings)

- Could contain nested blocks of descriptors

Resource Management Framework



Aka the libraries

- Vendor agnostic API, vendor specific plugins possible
- Receives descriptors from applications, translates in device tree in format appropriate for platform (OF, ACPI).
 - Requirements on contents is vendor specific
- Manage FPGA resources for conflicts. Etc
- Fed by policy/configuration
 - Permissions, usage time
 - Accounting is possible for implementing paid services

Hypervisor and Virtual Machine Support

(inte

Summary: Reconfigurable Computing Framework for Linux Requirements

- Must support Embedded Systems as well as Client/Server Systems
 - x86, ARM, any other CPUs that make use of offload elements
- Must support many types of interconnects
 - PCIe, AXI, etc
- Support different offload elements
 - GPUs, DSPs, FPGA, many integrated CPUs (MICs)
- Support existing technologies such as OpenCL perhaps not directly
 - OpenCL and HLS used as embedded technology components within this framework
- Accelerator Function (AF) enumeration, resource management, dynamic AF insertion and removal, resource balancing
- Support exposure to AFs through a hypervisor and Virtual Machines

Acknowledgements

- Alan Tull, Findlay Shearer, Jun Nakashima, Susan Cohen, Mike Kinsner
- Linux Community
- Programmable Solutions Group (PSG) of Intel
- Linux Foundation

For more information...

- Reconfigurable Computing Group
 - <u>http://wiki.linuxplumbersconf.org/2016:fpgas_and_programmable_logic_devices</u>
- Email <u>vves.vandervennet@intel.com</u> and <u>vince.bridgers@intel.com</u>

Intel Corporation