
1

Ever Growing CPU States:

Context Switch with Less Memory and
Better Performance

Fenghua Yu <fenghua.yu@intel.com>

2

Agenda

Å Introduction

Å Impact of xstates in Context Switch

Å Context Switch Optimizations for xstates

Å Kernel Implementation for xstates Context Switch

Å Security Concern and Solution

Å Status and Future Work

Å Q & A

3

Terms

- FP: Floating Point

- SSE: Streaming SIMD Extensions

- AVX/AVX2/AVX-512: Advanced Vector Extensions

- MPX: Memory Protection Extensions

- Extended States (xstates): Currently include FP/SSE/AVX2/MPX/AVX-512

registers

- Xsave area: kernel mem allocated for xstates context per process defined in

xsave_struct

To reduce confusion, the following terms are used in this presentation:

4

CPU

Registers

Introduction ðX86 Context Switch Flow

xstates

basic

Kernel memory

Register context for process A

xstates registers

per_event registers

Basic registers (segment, ip, cr, etc)

Register context for process B

Xstates registers

Per_event registers

Basic registers(segment, ip, cr, etc)

Perf_event

Save registers

Restore registers

5

Agenda

Å Introduction

Å Impact of xstates in Context Switch

Å Context Switch Optimizations for xstates

Å Kernel Implementation for xstates Context Switch

Å Security Concern and Solution

Å Status and Future Work

Å Q & A

6

Why Care Xstates? Large Portion of CPU States Are

From Xstates

xstates(FP/SSE/A
VX/MPX/AVX-512)

Perf_event
registers

Basic
registers

Total 3480 bytes/process currently
maintained in kernel

xstates perf_event registers basic registers

72%

24%
4%

Impact of improperly handling

large xstates:

1. Large memory footprint

2. Large cache footprint

3. Slow context switch

execution

4. Slow response to user and

bad user experience

5. Overall performance

degradation

7

And Xstates Are Growing Over Years

0

500

1000

1500

2000

2500

3000

X
s
ta

te
s
 S

iz
e
 (

b
y
te

s
)

Time

Legacy FP State (160 bytes) Legacy SSE State (352 bytes) AVX2(YMM_H) (256 bytes) MPX (128 bytes) AVX-512 (1600 bytes)

8

Agenda

Å Introduction

Å Impact of xstates in Context Switch

Å Context Switch Optimizations for xstates

Å Kernel Implementation for xstates Context Switch

Å Security Concern and Solution

Å Status and Future Work

Å Q & A

9

Optimization 1: Init Optimization

The state is not used and is not saved/restored during context switch

Process

life time

FP

SSE

YMM_H

MPX

AVX-

512

The state is used and is saved/restored during context switch

Start First Use FP First Use AVX2 First Use SSE First Use AVX512 Done

Start saving/restoring a state only after it is first used

10

Optimization 2: Modified Optimization

CPU

Kernel memory

Xsave area for process P

1. Switch to P: restores all xstates

3. Switch out P: only saves modified

FP and MPX registers back

FP SSE YMM_H MPX AVX512

10.50+b*
c=10

Y=
encry
pt(x);

AVX
calc
ulati
ons

2. P runs: changes FP

and MPX registers

Example of how only modified FP and MPX registers are detected and saved

FP SSE YMM_H MPX AVX512

11

Optimization 3: Compacted Format of Xsave Area

Xstates Byte

offset

Legacy FP State 0

Legacy SSE State 160

Xsave Header Data 512

YMM_H State (256 bytes) 576

MPX_BNDREGS(64 bytes) 832

MPX BNDCSR (64 bytes) 896

AVX-512 KMASK (64 bytes) 960

AVX-512 ZMM_H (512 bytes) 1024

AVX-512 ZMM (1024 bytes) 1536

Xstates Byte

offset

Legacy FP State 0

Legacy SSE State 160

Xsave Header Data 512

AVX-512 KMASK (64 bytes) 576

AVX-512 ZMM_H (512 bytes) 640

AVX-512 ZMM (1024 bytes) 1152

Scenario 1: FP/SSE/AVX/MPX/AVX3

are enabled in processor

Scenario 2: Only FP/SSE/AVX512 are

enabled in processor

Total size: 2560 bytes/process

Total size: 2176 bytes/process

Scenario 2 occupies 384 bytes or

15% less mem than scenario 1 for

xsave area per process

12

Xstates Context Switch Instructions Overview

Instructions Format Optimization States Xsave

Area
Standard Compacted Init Modified User Supervisor

fxsave/

Fxrstor
V V Legacy FP, SSE

xsave/

xrstor
V V Legacy

FP, SSE

AVX2, AVX-512, MPX

xsaveopt/

xrstor
V V V V

xsavec/

xrstor
V V V

xsaves/

xrstors
V V V V V All above + Supervisor

States

13

Agenda

Å Introduction

Å Impact of xstates in Context Switch

Å Context Switch Optimizations for xstates

Å Kernel Implementation for xstates Context Switch

Å Security Concern and Solution

Å Status and Future Work

Å Q & A

14

Saving Current Xstates to Previous Process

fxsave

xsave

xsaveopt

xsaves

Save xstate

xsaves

CPU

xsaveopt

xsave

Kernel memory

Xsave area in prev process

Xsave area in next process

Y

Y

Y

N

N

N

Save xstate

registers

N

15

Loading New Xstates from Next Process

fxrstor

xrstor

xrstors

restore xstate

xsaves

CPUxsave

Y

Y

N

N

Kernel memory

Xsave area in prev process

Xsave area in next process
Restore xstate

registers

16

Standard Format of Xsave Area in User Space for Backward

Compatibilty with Legacy Applications

Process P:

xrstorxsave

CPU

signal handler

signal context: Standard

format of xsave area

Kernel memory

Compacted formatted

xsave area for process P

xrstors

xsaves

Kernel

space

User

space

17

Kernel memory

Xsave area for process P

Kernel API for Accessing Registers in Compacted

Format of Xsave Area

Legacy FP State 0

Legacy SSE State 160

Xsave Header Data 512

MPX_BNDREGS 832

MPX_BNDCSR 896

Scenario: Only FP/SSE/MPX are

enabled in processor

+

MPX caller

Base
addr

MPX registers
addr

MPX
registers
offset

get_xsave_addr

All offsets in xsave area are calculated
during kernel boot from
cupid(eax=0x0d, ecx=n, n>1)

18

Agenda

Å Introduction

Å Impact of xstates in Context Switch

Å Context Switch Optimizations for xstates

Å Kernel Implementation for xstates Context Switch

Å Security Concern and Solution

Å Status and Future Work

Å Q & A

19

Potential Security Concern for Supervisor States

CPU

Kernel

space

User

space

Ptrace tool

Kernel buffer

User buffer User buffer

Supervisor xstates

read by user

Kernel buffer

Supervisor xstates

written by userxsavesxrstors

20

Solution for Security Concern for Supervisor States

CPU

Kernel

space

User

space

Ptrace tool

Kernel buffer

User buffer User buffer

No supervisor xstates

leaked to user

Kernel buffer

No supervisor xstates

written by userxrstors xsaves

filter out supervisor xstates filter out supervisor xstates

21

Agenda

Å Introduction

Å Impact of xstates in Context Switch

Å Context Switch Optimizations for xstates

Å Kernel Implementation for xstates Context Switch

Å Security Concern and Solution

Å Status and Future Work

Å Q & A

22

Patches Status

Instructions Kernel

fxsave/

fxrstor

In 3.16 or earlier version

xsave/

xrstor

xsaveopt/

xrstor

xsavec/

xrstor

Not implemented

xsaves/

xrstors

In 3.17

23

Future Work

Å Init optimization for xrstor/xrstors in kernel.

Å Init optimization for xsaveopt/xsavec/xsaves is implemented in

processor

Å Enable supervisor xstates once hardware implementation is

available.

Å Currently there is no supervisor xstate implemented yet.

Å Performance improvement measurement

24

Acknowledgements

Asit Mallick, H. Peter Anvin, Glenn Williamson, Bruce Schlobohm

(Intel SSG/OTC)

25

References

[1] Intel 64 and IA-32 Architectures Software Developerôs Manual

(Volume 1, 2, 3)

[2] Intel® Architecture Instruction Set Extensions Programming

Reference

[3] Linux Kernel Source Tree.

Q & A

