
©2015 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to

change without notice. All information is provided on an “AS IS” basis without warranties of any kind.

Statements regarding products, including regarding their features, availability, functionality, or compatibility,

are provided for informational purposes only and do not modify the warranty, if any, applicable to any

product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron trademarks are the

property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Linux Storage System Bottleneck

Exploration

Bean Huo / Zoltan Szubbocsev

Beanhuo@micron.com / zszubbocsev@micron.com

mailto:Beanhuo@micron.com
mailto:zszubbocsev@micron.com

© 2015 Micron Technology, Inc.

Outline

▪ Introduction

▪ Introduction to Linux storage stack analysis methodology

▪ eMMC stack analysis

▪ UFS and NVMe stack analysis comparison

▪ Summary

| October 25, 20172 | Micron Confidential

Introduction

© 2015 Micron Technology, Inc.

About us

▪ Work for Micron

▪ Part of the embedded business unit

▪ Focusing on embedded storage SW

▪ Based in Munich part of the embedded system architecture and

engineering group

▪ Areas we work on, embedded file systems, eMMC, UFS, NVMe for

embedded

| October 25, 20174 | Micron Confidential

© 2015 Micron Technology, Inc.

Goals of our project

▪ Quantify storage system overhead in embedded systems for eMMC, UFS

and NVMe

– Understand how much of the physical speed is realized at user level

– Get an idea on how much Linux storage stack impacts the overall user space

performance

▪ Quantify NVMe storage stack improvements over UFS storage stack

– Does NVMe provide a better user level speed in embedded systems?

– If we put two equivalent UFS and NVMe devices in a system which would be better and

how much?

– How much improvements does it provide over a UFS stack?

| October 25, 20175 | Micron Confidential

© 2015 Micron Technology, Inc.

Introduction to eMMC, UFS and NVMe

▪ All three are solid state drive technologies, below in chronological order

– Consisting of NAND chips plus controller and firmware

▪ eMMC (embedded multi-media card)

– HS400 and Maximum speed can reach to 400 MB/s

▪ UFS (universal flash storage)

– UFS Gear3 728 MB/s per lane

▪ NVMe (non-volatile memory express)

– Gen3 1000MB/s per lane

| October 25, 20176 | Micron Confidential

Introduction to Linux storage stack

analysis methodology

© 2015 Micron Technology, Inc.

Methodology

 Workload generation

▪ Fio tool

▪ Single and multi-threaded workloads (1, 8 thread)

– 4KB random read, write

– 128 KB sequential read, write

– Direct IO and sync IO

 The utilities of tracing

▪ Ftrace

– Tracer: function_graph

– trace_printk() add tracing point

▪ Blktrace

– Cannot trace VFS-FS layer

– blk_add_trace_msg()

| October 25, 20178 | Micron Confidential

© 2015 Micron Technology, Inc.

Methodology

| October 25, 20179 | Micron Confidential

▪ Latencies broken down to 4 sections

– VFS-FS latency: user space submission to block layer

receiving a BIO

– Block layer submission to storage device submission

– HW transfer, storage submission to completion interrupt

– Request post, completion interrupt to block layer

completion

SCSI Stack

Write/read data

BIOs

Requests

HW IRQ handling

Bounce buffer post /

DMA un-mapping

Request end

Enqueue

Tasks

Applications

VFS/File System

Block
(Request Q , I/O schedule, plug/un-

plug)

Direct

I/O

Page

cache

Host Bus Driver
(Peek request->bounce copy->DMA

mapping)

Storage Devices

BIOs

Data

Transfer

2

1

3

4

Add trace point

Latency

eMMC stack analysis

Linux® Storage System Analysis for e.MMC With Command Queuing

freely download from ------------https://www.micron.com/resource-details/1ccd41ac-8196-

4987-8d46-83b2067d1ba5

© 2015 Micron Technology, Inc.

Speciation Of eMMC Target Platforms

| October 25, 201711 | Micron Confidential

Xilinx Zynq Zed board Jenson TX1 NVIDIA Board

CPU type ARM Cortex A9 ARM Cortex-A57 MPcore

Core number 2 4

L1 cache 32KB L1 I-cache and 32KB L1 D-

caches with parity per core

48KB L1 I-cache per core; 32KB L1

D-cache per core

L2 cache 512KB (Unified Cache) 2MB (Unified Cache)

CPU frequency 667MHz 1,73GHz

DDR type 512MB DDR3 (32bit) 4GB LPDDR4 (64 bit)

DDR frequency 533MHz 1600MHz

CQE Hardware CQ engine software simulation CQ

eMMC 32GB@HS400 8GB@HS400

Block FS Ext4 Ext4

© 2015 Micron Technology, Inc.

eMMC system overhead on the Xilinx Zed

| October 25, 201712 | Micron Confidential

 On the Zed board, the eMMC performance is dominated by software overhead, rather than device.

75%

37%
22%

31%
8%

0

500

1000

1500

2000

2500

3000

3500

direct seq_read direct_seq_write sync_seq_read sync_seq_write

L
a
te

n
c
y
 (

u
s)

64KB data I/O request system overhead on

the Zed

HW transfer VFS_FS Block_MMc request post

63%
78%

69%

92%

34%

18%

35%

12%
0

100

200

300

400

500

600

direct_random_read direct_random_write sync_random_read sync_random_write

L
a
te

n
c
y
 (

u
s)

4KB data I/O request system overhead on

the Zed

HW transfer VFS_FS Block_MMc request post

66%

82%

65% 88%

© 2015 Micron Technology, Inc.

eMMC system overhead on the TX1

| October 25, 201713 | Micron Confidential

 The performance with 128KB chunk size is impacted by 12-39% system overhead.

 With 4KB chunk size, we observe 73-81% system overhead.

61%

88%

65%

67%

0

500

1000

1500

2000

2500

direct_seq_read direct_seq_write sync_seq_read sync_seq_write

L
a
te

n
cy

 (
u

s)

128KB data I/O request system overhead

on TX1

HW transfer VFS_FS Block_MMc request post

27%
24%

26%
19%

0

50

100

150

200

250

300

350

direct_random_read direct_random_write sync_random_read sync_random_write

L
a
te

n
cy

 (
u

s)

4KB data I/O request system overhead on TX1

HW transfer VFS_FS Block_MMc request post

39%

12%

35%

33%

73%

76%

74%

81%

© 2015 Micron Technology, Inc.

Summary

▪ Direct I/O has better performance than Sync I/O due to lack of memory copy operation

and page cache usage.

▪ System overhead is observed to be a significant contributor to I/O duration and even in

higher end system with small chunk accesses it is significant.

▪ Even for high speed hardware platform, the conventional Linux software stack can not fully

exploit the speed provided by high speed eMMC devices.

| October 25, 201714 | Micron Confidential

UFS and NVMe stack analysis

comparison

© 2015 Micron Technology, Inc.

Speciation Of UFS/NVMe Target Platform
Hikey960

CPU # A73 x 4 + A53 x 4(BigLittle)

OS Android, Linux kernel 4.4.80

IO Type Direct IO

File System ext4

IO Tool fio

IO Trace Tool Blktrace / ftrace

16 | October 25, 2017| Micron Confidential

UFS NVMe

Lanes 2 1

Density 128GB 128GB

Phy / link Interface M-phy Gear 3 PCIe Gen2

Queues 1 8

Queue depth UFS supports to 256, but UFS host capacity

only can support 32.
1024 per queue

INTs 1 1(Sharing)

© 2015 Micron Technology, Inc.

UFS/NVMe SW Stack

| October 25, 201717 | Micron Confidential

Application

VFS / File System

Block(blk-mq)

NVMe Driver

(Multi queue)

PCIe host Driver

R/W/…

BIO

NVMe Device

SCSI top layer

SCSI Mid layer

(scis-mq)

SCSI low layer

UFS Host Driver

UFS Device

▪ NVMe has more compact/simpler SW stack and

provides shorter code paths and lower

overhead.

▪ NVMe stack is newer optimized for managed

NAND devices

▪ Nvme can better support parallelism due to

advanced multi-queue capability

© 2015 Micron Technology, Inc.

4KB Random HW/SW latency comparison(per thread)

| October 25, 201718 | Micron Confidential

26%
29%

40% 25%

74%

71%

60%
75%

0

20

40

60

80

100

120

UFS NVME UFS NVME

1T 8T

u
s

Thread count

4KB Random write

HW SW

63%
72%

69% 70%

37%

28%

0

20

40

60

80

100

120

140

160

UFS NVME UFS NVME

1T 8T

u
s

Thread count

4KB Random Read

HW SW

– System overhead is significant in both UFS and NVMe ranging from 60-75% of total IO time for random write and 10-

37% from random read

© 2015 Micron Technology, Inc.

128KB sequential HW/SW latency comparision (per thread)

| October 25, 201719 | Micron Confidential

– System overhead on sequential large chunk writes in ranging between 26-45% with single thread and between 8-10%

with multiple threads

– Sequential reads experience overhead between 13-33% with single threads and 7-19% with multiple threads

54%

74%

90%

92%

45%

26%

10%

8%

0

100

200

300

400

500

600

UFS NVME UFS NVME

1T 8T

u
s

Thread count

128KB Sequential write

HW SW

67%

87%

81%
93%

33%

13%

19%

7%

0

100

200

300

400

500

600

700

800

UFS NVME UFS NVME

1T 8T

u
s

Thread count

128KB Sequential Read

HW SW

© 2015 Micron Technology, Inc.

System overhead comparison with 4KB

0

10

20

30

40

50

60

70

80

90

1T 8T

100%

100%

66%

80%

U
S

Thread count

4KB Random write

UFS NVME

| October 25, 201720 | Micron Confidential

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1T 8T

100%

100%

79%

96%

U
S

Thread count

4KB Random read

UFS NVME

– NVMe shows a significantly lower system overhead vs UFS in small chunk accesses

– The difference decreases with increase in number of threads

© 2015 Micron Technology, Inc.

System overhead comparison with 128KB

| October 25, 201721 | Micron Confidential

0

20

40

60

80

100

120

140

160

180

200

1T 8T

100%

100%

58%

41%

u
s

Thread count

128KB Sequential Write

UFS NVME

0

20

40

60

80

100

120

140

1T 8T

100%

100%

74%

62%

u
s

Thread count

128KB Sequential Read

UFS NVME

– NVMe shows a significantly lower system overhead vs UFS in small chunk accesses

© 2015 Micron Technology, Inc.

Estimated system level performance comparison with typical

device access times

| October 25, 201722 | Micron Confidential

0

100

200

300

400

500

600

seq write seq read

477,10

578,70

357,14

503,02

M
B

/s

128KB Sequential W/R Comparison(single thread)

NVMe UFS

0

2000

4000

6000

8000

10000

12000

14000

Random write Random read

12346

8333
9259

7692IO
P

S

4KB Random W/R IOPS comparison (single thread)

NVMe UFS

25%

13%
15%

8%

– Assuming identical NVMe and UFS devices, graph represents performance differences

– Sequential write access time:150 usec, Sequential read access time:124 usec

– Random write access time: 28 usec, Random read access time: 80 usec

– NVMe shows 25% benefits in sequential write and 13% benefit in sequential read. 15% improvement in

random write and 8% improvement in random read

© 2015 Micron Technology, Inc.

0

5

10

15

20

25

30

35

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Ta
sk

 c
o

u
n

t

samples

Number of outstanding tasks in UFS queue

UFS queue limitation

| October 25, 201723 | Micron Confidential

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

Ta
sk

 c
o

u
n

t

From sample 20000 to sample 21000

© 2015 Micron Technology, Inc.

NVME queue limitation(single queue)

| October 25, 201724 | Micron Confidential

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100

0 10000 20000 30000 40000 50000 60000 70000 80000

T
a
sk

 c
o

u
n

t

samples

Number of outstanding tasks in NVMe queue

500
550
600
650
700
750
800
850
900
950

1000
1050
1100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
a
sk

 c
o

u
n

t

From sample 10000 to sample 20000

30ms 50ms

© 2015 Micron Technology, Inc.

UFS/NVMe performance comparison in high parallel level

| October 25, 201725 | Micron Confidential

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1 2 4 8 16 32 64 128 256 512

N
o

rm
al

iz
e

d
 M

B
/s

Thread count

4KB RandomRead Normalized Comparison Between UFS and NVMe

UFS NVMe

© 2015 Micron Technology, Inc.

Summary

| October 25, 201726 | Micron Confidential

▪ We observe storage system overhead that eats into underlying storage

device bandwidth. Overhead is more significant with small chunk IO accesses

▪ This overhead is expected to be more significant with faster storage devices

▪ NVMe shows improved performance due to leaner storage system up to 25%

in certain cases

▪ NVMe provides a richer queuing infrastructure, this has an observable benefit

in high thread count

Q&A

