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About us

▪ Work for Micron 

▪ Part of the embedded business unit

▪ Focusing on embedded storage SW

▪ Based in Munich part of the embedded system architecture and 

engineering group

▪ Areas we work on, embedded file systems, eMMC, UFS, NVMe for 

embedded
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Goals of our project

▪ Quantify storage system overhead in embedded systems for eMMC, UFS 

and NVMe

– Understand how much of the physical speed is realized at user level

– Get an idea on how much Linux storage stack impacts the overall user space 

performance

▪ Quantify NVMe storage stack improvements over UFS storage stack

– Does NVMe provide a better user level speed in embedded systems?

– If we put two equivalent UFS and NVMe devices in a system which would be better and 

how much?

– How much improvements does it provide over a UFS stack?
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Introduction to eMMC, UFS and NVMe

▪ All three are solid state drive technologies, below in chronological order 

– Consisting of NAND chips plus controller and firmware

▪ eMMC (embedded multi-media card) 

– HS400 and Maximum speed can reach to 400 MB/s

▪ UFS (universal flash storage)

– UFS Gear3 728 MB/s per lane

▪ NVMe (non-volatile memory express)

– Gen3 1000MB/s per lane
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Introduction to Linux storage stack 

analysis methodology
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Methodology

 Workload generation

▪ Fio tool

▪ Single and multi-threaded workloads (1, 8 thread)

– 4KB random read, write

– 128 KB sequential read, write

– Direct IO and sync IO

 The utilities of tracing

▪ Ftrace

– Tracer: function_graph

– trace_printk() add tracing point

▪ Blktrace

– Cannot trace VFS-FS layer

– blk_add_trace_msg()
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Methodology 
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▪ Latencies broken down to 4 sections

– VFS-FS latency: user space submission to block layer 

receiving a BIO

– Block layer submission to storage device submission

– HW transfer, storage submission to completion interrupt

– Request post, completion interrupt to block layer 

completion
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eMMC stack analysis

Linux® Storage System Analysis for e.MMC With Command Queuing

freely download from ------------https://www.micron.com/resource-details/1ccd41ac-8196-

4987-8d46-83b2067d1ba5
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Speciation Of eMMC Target Platforms
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Xilinx Zynq Zed board Jenson TX1 NVIDIA Board

CPU type ARM Cortex A9 ARM Cortex-A57 MPcore  

Core number 2 4

L1 cache 32KB L1 I-cache and 32KB  L1 D-

caches with parity per core

48KB L1 I-cache per core; 32KB L1 

D-cache per core

L2 cache 512KB (Unified Cache) 2MB (Unified Cache)

CPU frequency 667MHz 1,73GHz 

DDR type 512MB DDR3 (32bit) 4GB LPDDR4 (64 bit)

DDR frequency 533MHz 1600MHz

CQE Hardware CQ engine software simulation CQ

eMMC 32GB@HS400 8GB@HS400

Block FS Ext4 Ext4
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eMMC system overhead on the Xilinx Zed
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 On the Zed board, the eMMC performance is dominated by software overhead, rather than device.
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eMMC system overhead on the TX1
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 The performance with 128KB chunk size is impacted by 12-39% system overhead.

 With 4KB chunk size, we observe 73-81% system overhead. 
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Summary 

▪ Direct I/O has better performance than Sync I/O due to lack of memory copy operation 

and page cache usage.

▪ System overhead is observed to be a significant contributor to I/O duration and even in 

higher end system with small chunk accesses it is significant.

▪ Even for high speed hardware platform, the conventional Linux software stack can not fully 

exploit the  speed provided by high speed eMMC devices.
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UFS and NVMe stack analysis 

comparison
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Speciation Of UFS/NVMe Target Platform
Hikey960

CPU # A73 x 4 + A53 x 4(BigLittle)

OS Android, Linux kernel 4.4.80

IO Type Direct IO

File System ext4

IO Tool fio

IO Trace Tool Blktrace / ftrace
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UFS NVMe

Lanes 2 1

Density 128GB 128GB

Phy / link Interface M-phy Gear 3 PCIe Gen2

Queues 1 8

Queue depth UFS supports to 256, but UFS host capacity 

only can support 32.
1024 per queue

INTs 1 1(Sharing)
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UFS/NVMe SW Stack
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Application

VFS / File System

Block(blk-mq)

NVMe Driver 

(Multi queue)

PCIe host Driver

R/W/…

BIO

NVMe Device

SCSI top layer

SCSI Mid layer 

(scis-mq)

SCSI low layer

UFS Host Driver

UFS Device

▪ NVMe has more compact/simpler SW stack and 

provides shorter code paths and lower 

overhead.

▪ NVMe stack is newer optimized for managed 

NAND devices

▪ Nvme can better support parallelism due to 

advanced multi-queue capability
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4KB Random HW/SW latency comparison(per thread)

|  October 25, 201718 |  Micron Confidential

26%
29%

40% 25%

74%

71%

60%
75%

0

20

40

60

80

100

120

UFS NVME UFS NVME

1T 8T

u
s

Thread count

4KB Random write

HW SW

63%
72%

69% 70%

37%

28%

0

20

40

60

80

100

120

140

160

UFS NVME UFS NVME

1T 8T

u
s

Thread count

4KB Random Read

HW SW

– System overhead is significant in both UFS and NVMe ranging from 60-75% of total IO time for random write and 10-

37% from random read
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128KB sequential HW/SW latency comparision (per thread)
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– System overhead on sequential large chunk writes in ranging between 26-45% with single thread and between 8-10% 

with multiple threads

– Sequential reads experience overhead between 13-33% with single threads and 7-19% with multiple threads
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System overhead comparison with 4KB
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– NVMe shows a significantly lower system overhead vs UFS in small chunk accesses

– The difference decreases with increase in number of threads
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System overhead comparison with 128KB
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– NVMe shows a significantly lower system overhead vs UFS in small chunk accesses
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Estimated system level performance comparison with typical 

device access times
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– Assuming identical NVMe and UFS devices, graph represents performance differences

– Sequential write access time:150 usec, Sequential read access time:124 usec

– Random write access time: 28 usec, Random read access time: 80 usec

– NVMe shows 25% benefits in sequential write and 13% benefit in sequential read. 15% improvement in 

random write and 8% improvement in random read
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NVME queue limitation(single queue)
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UFS/NVMe performance comparison in high parallel level
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Summary
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▪ We observe storage system overhead that eats into underlying storage 

device bandwidth. Overhead is more significant with small chunk IO accesses

▪ This overhead is expected to be more significant with faster storage devices

▪ NVMe shows improved performance due to leaner storage system up to 25% 

in certain cases

▪ NVMe provides a richer queuing infrastructure, this has an observable benefit 

in high thread count
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