
© Hitachi, Ltd. 2014. All rights reserved.

Hitachi Ltd.
Yoshihiro YUNOMAE

RAS Enhancement Activities
for Mission-Critical Linux Systems

© Hitachi, Ltd. 2014. All rights reserved.

0-1 Mission-Critical Systems

1

• We apply Linux to mission-critical systems.

– Banking systems/carrier backend systems/train management

systems and more

– People(consumers/providers) expect stable operation for long-term

use.

• Don't frequently change the system configuration

• Changing the system introduces the risk for illegal operation.

– "RAS" requirements are needed.

//upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg

© Hitachi, Ltd. 2014. All rights reserved.

0-2 RAS

2

• Reliability

– To identify problems before release

 e.g. Bug fixing, Testing

• Availability

– To continue the operation even if a problem occurs

 e.g. HA cluster system

• Serviceability

– To find out the root cause of the problem certainly in order to be able

to solve it permanently

 e.g. Logging, Tracing, Memory dump

• Do the systems satisfy these requirements in current

upstream kernel?

– Will talk about 'R' and 'S'

© Hitachi, Ltd. 2014. All rights reserved.

１. Fix a deadlock problem on NMI dump (R)

２. Improve data reception latency on serial devices (R)

３. Save names of more processes in ftrace (S)

Activities

3

4. Solve the printk message fragmentation problem (S)

© Hitachi, Ltd. 2014. All rights reserved.

１. Fix a deadlock problem on NMI dump (R)

２. Improve data reception latency on serial devices (R)

３. Save names of more processes in ftrace (S)

Activities

4

4. Solve the printk message fragmentation problem (S)

© Hitachi, Ltd. 2014. All rights reserved.

１-１ Memory dump deadlock - introduction

5

• We get memory dump via Kdump when serious problems,

which induce panic or oops, occur.

• Kdump

– Kernel crash dumping feature based on Kexec

1. In 1st kernel , kernel panic occurs.

2. Execute crash_kexec() in panic() and save the memory

3. Boot 2nd kernel (capture kernel) and copy /proc/vmcore

• When kernel panic occurs via NMI, Kdump operation

sometimes stops before booting 2nd kernel.

panic

1st kernel

crash_kexec()

2nd kernel

capture /proc/vmcore

boot
disk NW

media

© Hitachi, Ltd. 2014. All rights reserved.

１-２ Memory dump deadlock - reason

6

• The cause of the stop is deadlock on ioapic_lock in NMI

context.

– panic()->crash_kexec()->…->disable_IOAPIC()

 -> …->ioapic_read_entry()

• The scenario is …

1. Get ioapic_lock for rebalancing IRQ (irq_set_affinity)

2. Inject NMI while locking ioapic_lock

3. Panic caused by NMI occurs

4. Try to execute Kdump

5. Deadlock in ioapic_read_entry()

ioapic_read_entry()
{
 raw_spin_lock_irqsave(&ioapic_lock, flags);
 eu.entry = __ioapic_read_entry(apic, pin);
 raw_spin_unlock_irqstore(&ioapic_lock, flags);
}

© Hitachi, Ltd. 2014. All rights reserved.

１-３ Memory dump deadlock - fixing

7

• Fixed this problem by initializing ioapic_lock before

disable_IO_APIC():

• This problem has been already fixed in current kernel.

 (from kernel-3.11)

native_machine_crash_shutdown()
{
 …
#ifdef CONFIG_X86_IO_APIC
+ /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
+ ioapic_zap_locks();
 disable_IO_APIC();
#endif
 …
}

© Hitachi, Ltd. 2014. All rights reserved.

１. Fix a deadlock problem on NMI dump (R)

２. Improve data reception latency on serial devices (R)

３. Save names of more processes in ftrace (S)

Activities

8

4. Solve the printk message fragmentation problem (S)

© Hitachi, Ltd. 2014. All rights reserved.

２-１ Serial RX interrupt frequency - introduction

9

• Serial devices are mainly used not only for embedded

systems but also for mission-critical systems.

– Maintenance

– Sensor feedback

• Serial communication has the specialty that it is resistant for noise.

• For a control system(one of mission-critical systems), long-distance

communication is needed.

• If we have a sensor which sends small data packages each

time and must control a device based on the sensor

feedback, the RX interrupt should be triggered for each

packages. Sensor Server ①small data pkg

④feedback

dev App
②RX int.

③read

dev

© Hitachi, Ltd. 2014. All rights reserved.

２-２ Serial RX interrupt frequency - problem

10

• A test requirement of a system was that the serial

communication time between send and receive has to be

within 3msec.

• When we measured the time on 16550A, it took 10msec.

– It did not change even if the receiver application was operated as a

real time application.

– We analyzed this by using event tracer of ftrace.

– Hard IRQ of the serial device interrupts once each 10msec, so this is

caused by a HW specification or the device driver.

<idle>-0 [001] 2689.160668: irq_handler_entry: irq=4 name=serial
<idle>-0 [001] 2689.170653: irq_handler_entry: irq=4 name=serial
<idle>-0 [001] 2689.180634: irq_handler_entry: irq=4 name=serial
<idle>-0 [001] 2689.190620: irq_handler_entry: irq=4 name=serial

timestamp[sec] ～10msec

© Hitachi, Ltd. 2014. All rights reserved.

２-３ Serial RX interrupt frequency - reason

11

• HW spec of 16550A

– 16bytes FIFO buffer

– Flow Control Register(FCR)

• 2bit register

• Changeable RX interrupt trigger of 1, 4, 8, or 14 bytes for the FIFO buffer

 (0b00=1byte, 0b01=4bytes, 0b10=8bytes, 0b11=14bytes)

• In Linux, the trigger is hard-coded as 8bytes.

– For 9600baud, an interrupt per 10msec is consistent.

[PORT_16550A] = {
 .name = "16550A",
 .fifo_size = 16,
 .tx_loadsz = 16,
 .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
 .flags = UART_CAP_FIFO,
},

8bytes trigger

(start + octet + stop * 2 + parity) / 9600(baud) = 1/800 (sec/byte) = 1.25(msec/byte)

1bit 8bit 1bit * 2 1bit 1.25(msec/byte) * 8(byte) = 10msec

© Hitachi, Ltd. 2014. All rights reserved.

２-４ Serial RX interrupt frequency – temporary fixing

12

• Changed FCR as a test

– Result

• The interrupt frequency is once each 1.25msec.

– We need a configurable RX interrupt trigger.

[PORT_16550A] = {
 .name = "16550A",
 .fifo_size = 16,
 .tx_loadsz = 16,
 .fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_00,
 .flags = UART_CAP_FIFO,
}, 1byte trigger

<idle>-0 [001] 3216.436959: irq_handler_entry: irq=4 name=serial
<idle>-0 [001] 3216.438209: irq_handler_entry: irq=4 name=serial
<idle>-0 [001] 3216.439454: irq_handler_entry: irq=4 name=serial
<idle>-0 [001] 3216.440706: irq_handler_entry: irq=4 name=serial

timestamp[sec]
1.25msec

© Hitachi, Ltd. 2014. All rights reserved.

２-５ Serial RX interrupt frequency – tunable patch

13

• Added new I/F to the serial driver

– Tunable RX interrupt trigger frequency

• High frequency(1byte trigger) → low latency

• Low frequency(14byte trigger) → low CPU overhead

– Usability problems of 1st/2nd patch:

Using ioctl(2) (c.f. using echo command is better)

 Interrupt frequency can be changed only after opening serial fd

Cannot read FCR value (FCR is a write-only register)

– Change the ioctl(2) to sysfs I/F after discussion in a Linux community

• Set the interrupt trigger byte (if val is invalid, nearest lower val is set.)

• User can read/write the trigger any time.

– The driver keeps FCR value if user changes interrupt trigger.

• This new feature will be able to be used from kernel-3.17.

echo 1 > rx_trig_byte /* 1byte trigger*/

© Hitachi, Ltd. 2014. All rights reserved.

１. Fix a deadlock problem on NMI dump (R)

２. Improve data reception latency on serial devices (R)

３. Save names of more processes in ftrace (S)

Activities

14

4. Solve the printk message fragmentation problem (S)

© Hitachi, Ltd. 2014. All rights reserved.

3-１ PID-process name table in ftrace - introduction

15

• ftrace is in-kernel tracer for debugging and analyzing

problems.

• ftrace records PIDs and process names in order to specify

process context of an operation.

– If process name is indicated in a trace result, a user can understand

who executed the program by doing grep with the process name.

• In the trace file, process names are sometimes output as

<…>:

<...>-2625 [002] 209630.888186: sys_write(fd: 8, buf: 7fd0ef836968, count: 8)
<...>-2625 [002] 209630.888186: sys_enter: NR 1 (8, 7fd0ef836968, 8, 20, 0, a41)
<...>-2625 [002] 209630.888186: kfree: call_site=ffffffff810e410c ptr= (null)
<...>-2625 [002] 209630.888187: sys_write -> 0x8

name-PID

© Hitachi, Ltd. 2014. All rights reserved.

3-２ PID-process name table in ftrace - reason

16

• ftrace has saved_cmdlines file storing the PID-process name

mapping table.

– It stores the list of 128 processes that hit a tracepoint.

– If the number of processes that hit a tracepoint exceeds 128, the

oldest process name is overwritten.

– How does ftrace manage this table?

cat saved_cmdlines
13 ksoftirqd/1
10009 python
1718 gnome-panel
500 jbd2/sda5-8
…

© Hitachi, Ltd. 2014. All rights reserved.

3-３ PID-process name table in ftrace – current

17

• Read trace file (get process name from PID)

struct trace_entry{
…
 int pid;
}

1. Get a pid member in trace_entry structure
of each trace event

© Hitachi, Ltd. 2014. All rights reserved. 18

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

3

-

2

3

<PID> <map> struct trace_entry{
…
 int pid;
}

pid=1045

• Read trace file (get process name from PID)

2. Get map# from map_pid_to_cmdline[].
The size of the array is
PID_MAX_DEFAULT+1.

3-４ PID-process name table in ftrace – current

© Hitachi, Ltd. 2014. All rights reserved. 19

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

3

-

2

3

<PID> <map> struct trace_entry{
…
 int pid;
}

pid=1045

• Read trace file (get process name from PID)

0 rcu_bh

1 awk

2 bash

3 sleep

…
126 cat

127 kworker/0:1

saved_cmdlines[][]

<map> <process name>

3. Get process name from saved_cmdlines[][].
saved_cmdlines can hold 128 process names.

3-５ PID-process name table in ftrace – current

© Hitachi, Ltd. 2014. All rights reserved. 20

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

3

-

2

3

<PID> <map> struct trace_entry{
…
 int pid;
}

pid=1046

• Read trace file (get process name from PID)

No map#, so it cannot find process name.
→ The process name is shown as <...>.

Get process name of PID=1046, but …

3-６ PID-process name table in ftrace – current

© Hitachi, Ltd. 2014. All rights reserved. 21

123

582

456

780

838

1045

1321

4049

…

0

1

2

3

4

5

126

127

map_cmdline_to_pid[]

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

3

-

2

3

<PID> <map> <idx> <PID>

0 rcu_bh

1 awk

2 bash

3 sleep

…
126 cat

127 kworker/0:1

saved_cmdlines[][]

<map> <process name>

Record PID by rotation

• Store map information in saved_cmdlines

Managing the number of process names stored
in saved_cmdlines[][]

3-７ PID-process name table in ftrace – current

if ksoftirqd/0 (PID=1046) hits tracepoint, …

© Hitachi, Ltd. 2014. All rights reserved.

3-８ PID-process name table in ftrace – current

22

123

582

456

780

838

1046

1321

4049

…

0

1

2

3

4

5

126

127

map_cmdline_to_pid[]

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

3

-

2

3

<PID> <map> <idx> <PID>

0 rcu_bh

1 awk

2 bash

3 sleep

…
126 cat

127 kworker/0:1

saved_cmdlines[][]

<map> <process name>

Overwrite this element from 1045 to 1046

• Store map information in saved_cmdlines

© Hitachi, Ltd. 2014. All rights reserved. 23

123

582

456

780

838

1046

1321

4049

…

0

1

2

3

4

5

126

127

map_cmdline_to_pid[]

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

-

-

2

3

<PID> <map> <idx> <PID>

0 rcu_bh

1 awk

2 bash

3 sleep

…
126 cat

127 kworker/0:1

saved_cmdlines[][]

<map> <process name>

Delete old map# in order to avoid
double mapping

• Store map information in saved_cmdlines

3-９ PID-process name table in ftrace – current

© Hitachi, Ltd. 2014. All rights reserved.

3-１０ PID-process name table in ftrace – current

24

123

582

456

780

838

1046

1321

4049

…

0

1

2

3

4

5

126

127

map_cmdline_to_pid[]

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

-

3

2

3

<PID> <map> <idx> <PID>

0 rcu_bh

1 awk

2 bash

3 ksoftirqd/0

…
126 cat

127 kworker/0:1

saved_cmdlines[][]

<map> <process name>

Overwrite the process name in map#3

• Store map information in saved_cmdlines

© Hitachi, Ltd. 2014. All rights reserved.

3-１０ PID-process name table in ftrace – current

25

123

582

456

780

838

1046

1321

4049

…

0

1

2

3

4

5

126

127

map_cmdline_to_pid[]

-

-

-

-

120

32

…

0

1

1045

1046

32767

32768

map_pid_to_cmdline[]

…

-

3

2

3

<PID> <map> <idx> <PID>

0 rcu_bh

1 awk

2 bash

3 ksoftirqd/0

…
126 cat

127 kworker/0:1

saved_cmdlines[][]

<map> <process name>

• Store map information in saved_cmdlines

Develop tunable I/F

© Hitachi, Ltd. 2014. All rights reserved.

3-１１ PID-process name table in ftrace – tunable patch

26

• We added the changeable I/F 'saved_cmdlines_size' to

expand the max number of saved process names.

– Read/write saved_cmdlines_size
• For write, all saved_cmdlines information are cleared.

– Max size: PID_MAX_DEFAULT(32768)
• If we set 32768, all process names can be stored.

• This new feature can be used from kernel-3.16.

cat saved_cmdlines_size
 128 /* defalut value*/

// Switch to new saved_cmdlines buffers
echo 1024 > saved_cmdlines_size

cat saved_cmdlines_size
 1024 /* Store 1024 process names */

© Hitachi, Ltd. 2014. All rights reserved.

１. Fix a deadlock problem on NMI dump (R)

２. Improve data reception latency on serial devices (R)

３. Save names of more processes in ftrace (S)

Activities

27

4. Solve the printk message fragmentation problem (S)

© Hitachi, Ltd. 2014. All rights reserved.

4-１ printk fragmentation problem - introduction

28

• printk message outputs error logging or debugging

information in kernel.

– We handle automatically printk messages in user space in order to

detect that the system has became unstable.

– We want the kernel to output printk as expected.

– printk messages are sometimes mixed with similar messages.

• It is difficult to automatically handle an event from mixed messages.

• mixed kernel error messages in SCSI layer

[110781.736171] sd 2:0:0:0: [sdb]
[110781.736170] sd 3:0:0:0: [sdc] Unhandled sense code
[110781.736172] sd 3:0:0:0: [sdc]
[110781.736175] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
[110781.736177] sd 3:0:0:0: [sdc]
[110781.736178] Sense Key : Medium Error [current]
[110781.736187] Sense Key : Recovered Error
[110781.736189] [current]

Which process does this
message belong to?

© Hitachi, Ltd. 2014. All rights reserved.

4-２ printk fragmentation problem - introduction

29

• Mixed messages can occur when multiple printk() are

executed at the same time.

printk("sd 2:0:0:0: [sdb]¥n");

printk("Sense Key : Medium Error¥n");

printk("sd 3:0:0:0: [sdc]¥n");

<CPU0> <CPU1>

printk("Sense Key :
 Recovered Error¥n");

[110781.736171] sd 2:0:0:0: [sdb]
[110781.736177] sd 3:0:0:0: [sdc]
[110781.736178] Sense Key : Medium Error [current]
[110781.736187] Sense Key : Recovered Error

break into

© Hitachi, Ltd. 2014. All rights reserved.

4-３ printk fragmentation problem – Solution

30

• How to solve

1. Store all continuous messages in local buffer as

temporary, and execute printk

• This idea is rejected by SCSI community.

– https://lkml.org/lkml/2014/5/20/742

• To store continuous messages, we need big buffer.

• This can induce buffer overflow for deep nesting.

• Of course, memory allocation is invalid.

2. Add information necessary to merge all fragmented printk messages

• This idea is also rejected.

– https://lkml.org/lkml/2014/5/19/285

• The community said this problem should be fixed for each

subsystem.

3. Use traceevents of ftrace to output atomically only for SCSI layer

• This is not for all printk messages.

© Hitachi, Ltd. 2014. All rights reserved.

4-４ printk fragmentation problem – Key idea

31

• traceevents can be atomically stored to ring buffer.

• Kernel preemption is disabled.

• A ring buffer a CPU

 We don't need to concern about mixed traceevent.

• Use trace_seq_printf() for traceevent

• Add event information using not only macros but functions

• scsi-trace.c has already used this, but it does not have error

messages.

 We added new three traceevents for SCSI error messages.

 - scsi_show_result: output driverbyte, hostbyte

 - scsi_print_sense: output sense key with asc and ascq

 - scsi_print_command: output SCSI command

© Hitachi, Ltd. 2014. All rights reserved.

4-５ printk fragmentation problem – Result

32

scsi_show_result: …[sda] result=(driver=DRIVER_SENSE host=DID_OK)
scsi_print_sense: …[sda] Sense Key (Medium Error [current])
 Add. Sense (Unrecovered read error)
scsi_show_result: …[sdb] result=(driver=DRIVER_SENSE host=DID_OK)
scsi_print_sense: …[sdb] Sense Key (Medium Error [current])
 Add. Sense (Unrecovered read error)

atomic

atomic

• A result of dmesg in current kernel

• A result of ftrace with our patch

[6379.535874] sd 2:0:0:0: [sda]
[6379.538376] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
[6379.542083] sd 2:0:0:0: [sda]
[6379.544556] Sense Key : Medium Error [current]
[6379.549988] sd 2:0:0:0: [sda]
[6379.552408] Add. Sense: Unrecovered read error
[6379.574040] sd 3:0:0:0: [sdb]
[6379.576576] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
[6379.580299] sd 3:0:0:0: [sdb]
[6379.582727] Sense Key : Medium Error [current]

© Hitachi, Ltd. 2014. All rights reserved. 33

• Current patch

– https://lkml.org/lkml/2014/8/8/221

– Any comments are welcome!

4-６ printk fragmentation problem – current status

https://lkml.org/lkml/2014/8/8/221

© Hitachi, Ltd. 2014. All rights reserved.

5 Summary

34

• We are doing community activities for realizing Linux which

satisfies RAS requirements for mission-critical systems.

– Bug fixing (avoid the deadlock on Kdump)

– Add features (tunable serial RX trigger, tunable saved_cmdlines, and

SCSI traceevents)

– These activities can be used for not only mission-critical systems but

also other systems. For example, fragmented printk is a big problem

for a support division of system integrators.

© Hitachi, Ltd. 2014. All rights reserved. 35

Any questions?

© Hitachi, Ltd. 2014. All rights reserved. 37

• Linux is a registered trademark of Linus

Torvalds.

• All other trademarks and copyrights are

the property of their respective owners.

Legal statements

