
VIRTIO-NET:
VHOST DATA PATH ACCELERATION
TORWARDS NFV CLOUD

CUNMING LIANG, Intel

Agenda

• Towards NFV Cloud

– Background & Motivation

• vHost Data Path Acceleration

– Intro

– Design

– Impl

• Summary & Future Work

Towards NFV Cloud

OVS(-DPDK)OVS(-DPDK)

VNF0 VNF1 VNF2

NIC

VNF0’ VNF1 VNF2

NIC w/
Embedded Switch

OVS(-DPDK)

VNF0’ VNF1 VNF2

NIC w/
Embedded Switch

VIRTIO IHV Specific VIRTIO

Port
Representor

Cloud vSwitch as NFVi Accelerated vSwitch as NFVi Accelerated Cloud vSwitch as NFVi

� ��� ��

vDPA: Balanced Perf. and Cloudlization
• Device Pass-thru Like Performance
• Hypervisor native I/O
• Live-migration Friendly
• Stock vSwitch/VMs Support

Native I/O Perf. by SR-IOV device PT
Faster simple forwarding by ‘cache’
Remains historical gaps of cloudlization
• Stock VM and SW vSwitch fallback
• Cross-platform Live-migration

• VIRTIO is a well recognized by Cloud
• DPDK promotes its Perf. into NFV Level
• New accelerators comes, what’s the

SW impact on I/O virtualization?

No SW impact on
host I/O interface

Presentation focus on
SW impact for the goal

GOAL

IHV Specific IHV Specific

vDPA Intro

What is vDPA

• As a VMM native device, PV hasn’t shared
any benefits of I/O VT

• PV device was born with cloud-lization
characters,

• But it’s lack of performance towards NFV cloud.

• vHost Data Path Acceleration is a
methodology for a PV device to do direct
packet I/O over its associated accelerator.

– Decompose DP/CP of PV device

– CP remains to be emulated, but 1:1 associated
with accelerator

– DP pass-thru backed by accelerator

• DP capable accelerator has ability to
ENQ/DEQ VRING and recognize VRING
format according to VIRTIO Spec.
(show case of VIRTIO)

PV Dev Pass-thru

VMM Aware Unaware

Performance ~Cloud Qualified ~NFV Qualified

Direct I/O N/A(SW Relay) IOMMU/SMMU

I/O Bus VT N/A SR-IOV, SIOV

CPU Utilization Variable Zero

SW framework
Emulated device
w/ backend Impl.

kvm-pci,
vfio-{pci|mdev}

Cloud-lization

- LM friendly
- SW fallback
- SW vswitch

native

- Tricky LM
- N/A
- N/A

Why not device pass-thru for VIRTIO

In Fact

• VIRTIO is a growing SW Spec.

• Unlikely forcing HW to follow ‘uniform’ device definition

Disadvantage

• Inherits all device pass-thru properties

– “All or nothing” offload, SW fallback in the guest (bonding)

– Framework limitation to support live-migration in general use

• Becomes VIRTIO Spec. version specific

– e.g. 0.95 PIO, 1.0 MMIO, etc.

• Lose the benefit of decomposed frontend/backend device framework

– Diverse backend adaption

vDPA Design

VIRTIO Anatomy

• PCI CSR Trapped

• Device-specific register trapped
(PIO/MMIO)

• Emulation backed by backend
adapter via VHOST PROTO

• Packet I/O via Shared memory

• Interrupt via IRQFD

• Doorbell via IOEVENTFD

• Diverse VHOST backend adaption

MMU

QEMU

GUEST

PHYSICAL MEMORY

HOST

MMUIOMMU

KVMvhost-*

IRQFD

IOEVE
NTFD

VIRTIO-NET
DRIVER

VIRTIO DEV

N
O

TIFY

MEMORY

E
N

Q
/D

EQ

R
X

/TX

EMMULATION
FUNC

K
IC

K

V
H

O
ST P

R
O

T
O

DEVICE STATE

Data Path Pass-thru

• Decomposed VRING Data Path on ACC
– DMA Enq/Deq VRING via IOMMU
– Interrupt Notification

• VFIO INTR eventfd associate with IRQFD
• IRQFD as token for irq_bypass Prod/Cons
• Leverage existing posted-interrupt support

– Doorbell Kick
• SW Relayed IOEVENTFD to trigger

doorbell (PIO)
• Add guest physical memory slot for doorbell

direct mapping (MMIO)

• ACC needs a device framework
– Leverage user space driver by vhost-user
– vhost-net won’t directly associate with driver

ACC = Accelerator(VRING Capable)

IOMMU

ACC DEV

MMU

QEMU

GUEST

PHYSICAL MEMORY

HOST

MMU

KVMvhost-*

IRQFD

IOEVE
NTFD

VIRTIO-NET
DRIVER

VIRTIO DEV

N
O

T
IFY

MEMORY

R
X

/T
X

EMMULATION
FUNC

V
H

O
ST P

R
O

T
O

DEVICE STATE

MMIO CFG

EN
Q

/D
EQ

KICK

IN
TR M

M
IO

Control Path Emulation

• VIRTIO PIO/MMIO trap to QEMU

• Emulation Call VHOST Req.

• VHOST Req. go thru transport
channel via different backend

• User space backend
– Feature message extension

• Kernel space backend
– Add a new transport channel for VFIO

(mediated) device

– Define transport layout for data path
relevant request

QEMU
VHOST

Kernel vhost

vhost-user LIB

vfio device

tap/vhost

vhost-user

vhost-vfio

Message

Syscall

Syscall

Transport Layervhost
backend
type

Cross vhost Backend Live-migration

• Live-migration Friendly

• Consistent vhost transport
message sequence interact
with QEMU live-migration

• Cross vhost backend LM

• netdev for virtio-net-pci

– tap w/ vhost=on/off

– vhost-user

– vhost-vfio (+)

vDPA Implementation

Construct vDPA via VFIO

vhost-user adapter

• New protocol message
extension -- F_VFIO

• SLAVE Request to
handover vfio group fd
and notify meta data

• vhost-user adapter to
map doorbell

Dependence

• Leverage user space
device framework
(DPDK)

vhost-vfio adapter
• New netdev as vhost

backend

• Reuse QEMU VFIO
interface

• VFIO device as vhost
request transport layer

• Leverage vfio/mdev
framework

Dependence

• mdev_bus IOMMU support

• Single mdev per VF
instance in Kernel

#1 QEMU for User Space Driver #2 QEMU for Kernel Driver
DPDK Process VM

QEMU

Host Kernel

PV(VIRTIO) Domain

VFIO UAPI

iommu

mdev_bus

vfio_device_ops
vHost FP Req over mdev

Device Driver

virtio-net-pci
device emulation

VIRTIO DEV

VIRTIO DRV

vhost-vfio
adaptor

vhost-user
adaptor

vfio-mdev/mdev-core

vhost-user
library

Device
Driver

User Space Driver Kernel Driver

vfio-pci

Mediated Dev

QEMU Changes for User Space Driver
-- #1 vhost-user extension

• New Protocol Feature -- VHOST_USER_PROTOCOL_F_VFIO

• Slave Request
– Meta Data Update: VFIO Group FD, Notify Info

– Actions: Enable/Disable ACC

• VFIO Group FD
– Associate VFIO group fd with kvm_device_fd

– Update GSI routing

• Notify Info
– Represent for doorbell info (in page boundary)

– Add guest physical memory slot

QEMU Changes for Kernel Driver
-- #2 vhost-vfio

• New netdev for virtio-net-pci
– ‘-chardev vfio,id=vfio0,sysfsdev=/sys/bus/mdev/devices/$UUID \

– -netdev vhost-vfio,id=net0,chardev=vfio0 -device virtio-net-pci,netdev=net0’

• VFIO device based vhost transport layer
– vhost request over vfio_device_ops(read, write)

– data path relevant request: feature, vring, doorbell, log

• Construct context for data path accelerator
– Leverage QEMU KVM/VFIO interface

– Memory region mapping for DMA

– Add guest physical memory slot for doorbell

– Interrupt/IRQFD via VFIO device ioctl CMD

• Don’t expect other host applications to use the device so far

Relevant Dependence
-- #2 vhost-vfio

• Kernel
– Leverage VFIO mediated device framework

– Add IOMMU support for mdev-bus

– VRING capable device driver to register as mdev

• Singleton mode only, 1:1 BDF(Bus, Device, Function) with mdev

Summary

• Hypervisor Native I/O
• virtio-net-pci

• Stock vSwitch/VMs Support
• Transparent to frontend

• Device Pass-thru Like Performance
• Data path pass-thru

• Live-migration Friendly
• Cross vhost backend live-migration

• The method is not VIRTIO only
• Rethinking I/O VT, break through the boundary

Future Work

• Collect feedback

• Send out RFC patches to DPDK, Qemu and Kernel

• Upstream current Impl. together w/ other relevant patches

• Continue to enable AVF/IHV device interface

Acknowledgment

• Tiwei Bie

• Jianfeng Tan

• Dan Daly

• Zhihong Wang

• Xiao Wang

• Heqing Zhu

• Kevin Tian

• Rashmin N Patal

• Edwin Verplanke

• Parthasarathy, Sarangam

Thanks!

Q&A
Contacts:

cunming.liang@intel.com

