

COMPARING MESSAGING TECHNIQUES FOR THE IOT

Mike Anderson

Chief Scientist

The PTR Group, Inc. http://ThePTRGroup.com mike@theptrgroup.com

Copyright 2017, The PTR Group, Inc.

Who is The PTR Group?

- ★The PTR Group was founded in 2000
- ★We are involved in multiple areas of work:
 - Robotics (NASA space arm)
 - Flight software (over 35 satellites on orbit)
 - Offensive and defensive cyber operations
 - I'll leave this to your imagination ©
 - Embedded software ports to RTOS/Linux/bare metal
 - ▶ IoT systems architecture and deployment

Speaker/Author Details

- Website:
 - http://www.theptrgroup.com
- Email:
 - mailto:mike@theptrgroup.com
- Linked-in:
 - https://www.linkedin.com/in/mikeandersonptr
- Twitter:
 - @hungjar

Almost 40 years in the embedded and real-time industry for both commercial and Government customers.

What We'll Talk About...

- ★Connectivity in the IoT
- ★Messaging models
- ★The major techniques
- ★Issues of efficiency
- **★**Summary

The World of the IoT

- ★ Given the billions of devices that are forecast to be attached to the Internet, communications is a key concern
- ★Other related topics include the communications media, addressability, protocols, security, ease of use and much more
- ★ We'll touch on these briefly with respect to how they impact the messaging techniques

IoT Connectivity Models

★ There are two primary connectivity models used in the IoT – cloud and fog

- ★ In the cloud model, all of the IoT devices are directly connected to the Internet for data transfer to cloud-based servers
 - Unfortunately, this leaves your sensors exposed to the bad guys
- ★ The data analysis people want access to the raw data
 - Maybe there is some hidden nugget in the raw data

Source: fortune.com

IoT Connectivity Models (2)

- ★ In the fog model, the sensors are connected to a gateway/ border router and never expose themselves to the Internet directly
- ★ You then can harden the security on the border router (typically Linux) to isolate and protect the sensors from direct attack
- However, all data then needs to be relayed from the router to/from the cloud
- ★ Often, the router is doing data filtering and aggregation to limit the amount of traffic to the servers
 - Reduces probability of finding the nugget hidden in the raw data

Source: youtube.com

Communications Media

- ★There are a lot of communications techniques that are vying for developer's attention
- ★These range from the traditional Wi-Fi and IEEE 802.15.4 to new radio standards and even new modes of LTE cellular
 - As you can tell, the emphasis is on wireless communications

Wireless Standards - Wi-Fi HaLow

- ★ We're familiar with the traditional Wi-Fi IEEE 802.11abgn/ac flavors
 - Ranges from 11 Mbps to 1 Gbps
 - However, these are notoriously power hungry
- ★ The new IEEE 802.11ah (a.k.a., Wi-Fi HaLow) provides support for sub-GHz, low-power Wi-Fi

Source: wifi-alliance.org

- ▶ Ranges up 1 km and thousands of nodes connected to the AP
- * Special APs will relay between HaLow and normal Wi-Fi
- * IP-based communications @ 20-40 Mbps

Wireless Standards - LoRaWAN

- ★ New, sub-GHz star-of-stars topology with E2E AES-128 encrypted links
 - ▶ EU 868, EU 433, US 915, AS 430 bands
- * Based on proprietary radio technology from Semtech, Inc.
- ★ Symmetric link speeds
 - But, data rates are < 100kbps</p>
 - Typically, 38.4Kbps
- * Range is ~2km in urban and 22km in rural applications
- Not IP based
 - Depends on concentrators to relay with IP-based networks

Source: semtech.com

Wireless Standards -- SigFox

- SigFox is a proprietary cellular-like communications service in the sub-GHz band
- * Targets really low-throughput devices like remote sensors
 - Up to 140 messages/day
 - Payload is 12 bytes
 - ▶ Throughput is 100 bits/second
- ** Range is ~10km in urban or ~50km in rural applications
- Very low power consumption
- ** Requires a gateway to get to IP-based devices

Source: twitter.com

Wireless Standards - IEEE 802.15.4

- ★IEEE 802.15.4 is available in multiple radio frequencies including 2.4 GHz and sub-GHz bands
- ₹802.15.4 really only defines to L2
 - Suppliers like ZigBee, Z-Wave and Thread Alliance supply L3-L7
- ★ZigBee IP and Thread's 6LoWPAN are IPv6 based
- ★Other 802.15.4 suppliers use proprietary protocols
 - They look like UARTs to the code

Wireless Standards - LTE Evolution

- * The cellular carriers want in on the action of the IoT
 - However, their emphasis has been on very high data rates that aren't typically needed in IoT applications
- ★ LTE has 3 new flavors targeting LPWAN applications
 - ▶ LTE Cat.1 (<10Mbps(DL) and < 5Mbps (UL))</p>
 - ▶ LTE Cat.M1 (< 1Mbps (DL/UL))</p>
 - ▶ LTE Cat.NB1 (< 170Kbps (DL) and < 250 Kbps (UL))</p>

- Supports IPv4/IPv6
- * These will typically be billed on data usage

Source: nimbelink.com

Wireless Standard -- Bluetooth™

★ Bluetooth has been a long time standard for use in PAN connectivity in the 2.4 GHz band

- ▶ Limited range (<30m) can be a problem
- * Comes in Boothtooth Classic and Bluetooth Smart (BLE) varieties
 - Classic targets bi-directional communications (< 1Mbps) in the serial profile and requires pairing
 - ▶ BLE is more focused on uplink traffic and does not require pairing
- ★ Either could run IP via PPP, but Classic is better targeted at IP because of its connection-orientation

IP or Not IP?

- Most of us in this room are familiar and comfortable with IP-based communications
 - ▶ TCP/UDP for communications and TLS/DTLS or IPsec/VPNs for security
- * However, many of the wireless standards do not support IP

Source cafepress.com

- We need to consider alternative messaging protocols if we are to use these other wireless connectivity types
- * Fortunately, there are messaging approaches that can lend themselves to both IP and non-IP communications channels

Messaging Patterns

- ★ In the IoT, the communications patterns tend to fall into one of just a few models
- Publish/Subscribe (pub/sub)
 - Sensors publish their data to a centralized server and the server distributes that data to those who subscribe to the data
 - MQTT is an example of this pattern
- Client/Server
 - ▶ This pattern is more of a traditional send the data to the server and hope that the server knows what to do with it
 - RESTful and CoAP are examples of this
- ★ Peer-to-peer (P2P)
 - ▶ This is direct messaging between the source and sink of the data
 - XMPP can use this model

Messaging Protocols -- MQTT

Message Queue Telemetry Transport was originally developed by IBM in 1999

Source: mgtt.org

- It is now an ISO standard (ISO/IEC PRF 20922) as well as an OASIS standard
- Designed for lightweight messaging that rides on top of IP protocols
- Uses a pub/sub messaging model that requires a broker/server for message distribution
- No particular format required for the payloads although the messaging methods are well defined

Messaging Protocols -- MQTT (2)

- ★ Methods include:
 - Connect, Disconnect, Subscribe, UnSubscribe and Publish
- Used by IBM Bluemix and Amazon IoT platforms among others
- Most IoT frameworks have support for MQTT
- ★ Can run easily on small uCs
- Several open-source implementations of the message brokers including Eclipse's Mosquito, OpenStack and MyQtt

Messaging Protocols -- DDS

- * The Data Distribution Service in an Object Management Group M2M standard
 - Aims at real-time, dependable message exchange
- * Originally designed in the 1990s as a distributed simulation standard, it is now used in many Government-related projects owing to its reliability
- * This uses pub/sub, but does not use a message broker
 - It uses IP multicast

Source: twinoakscomputing.com

Messaging Protocols – DDS (2)

- * DDS has two levels of interfaces:
 - ▶ The lower data-centric publish-subscribe (DCPS) ensures delivery
 - Has broadcast, send w/ acknowledge and other modes
 - ▶ The optional higher-level data local reconstruction layer (DLRL) is an application layer integration
- DDS for Lightweight CORBA Component Model (CCM) is focused on business model integration
- * Support for UML profile and platform-specific modeling
 - Support for Java, C/C++, Python, Lua, Ada, Pharo, Ruby and more APIs as well as access to CCM QoS profiles
- * The open-source OpenDDS implementation is available

Messaging Protocols -- XMPP

- ★ Extensible Messaging and Presence Protocol is the protocol used by Jabber and Facebook messaging
 - Described in numerous RFCs
- Messages are in XML and can be sent using TCP or HTTP transports
- *XMPP can be used in client-server, pub/sub or P2P models
- *There are multiple open source implementations

Source: wikipedia.org

Messaging Protocols -- REST

- Representational State Transfer is a protocol that uses HTTP verbs (GET/POST/PUT/DELETE, etc.) for message transfer and storage
 - * Also known as RESTful Web Services
- Primarily targets the client/server model
 - * Allows access and manipulation of web resources using a URI and implementations in XML, HTTP, JSON and others
- *Any implementation that uses HTTP for data transfer and storage can be said to use REST
 - * As such, there are multiple open-source implementations

Messaging Protocols -- CoAP

- Constrained Application Protocol is an application layer intended for use in constrained resource devices
 - Essentially, it is a binary version of REST that can be translated into HTTP semantics
- Supports multicast and has very low overhead using a UDP-based transport mechanism
- Internet protocols
 (IP, TCP, HTTPS...)

 Vendor1
 Sensor Network

 Vendor2
 Sensor Network

Source: youtube.com

- Security provided via DTLS and is compatible with 6LoWPAN
- Has support for resource discovery
- Simple subscription for a resource with resulting push notifications
 - ► Can also be used in client/server or P2P modes

Messaging Protocols -- Proprietary

- There is no shortage of proprietary protocols in use in IoT frameworks
 - Often derived from pre-existing serial formats that predate IP

- ZigBee®
 Source: zigbee.org
- ★ ZigBee, Z-Wave, Wireless HART and others all have proprietary implementations
 - You must be a member of the respective alliance to gain access
- ★ No open-source implementation of ZigBee, Z-Wave or Wireless HART is currently available ☺

Lack of IP Limits Options

- ★The major proprietary protocols do not use any IPrelated transport
 - ▶ This means that the local network segment must interface with a gateway to convert the data to IP using one of the established protocols like REST or MQTT
- ★This limits your options on the messaging protocols and complicates debugging because you can't use tools like WireShark for monitoring

Transmission Issues

- ★ The cellular carriers prefer that you use REST and XMPP for messaging
 - ► They really seem to like you using XML, JSON or HTTP oriented messaging
- ★ This makes perfect sense when you consider that they make money from every single byte you transfer across their system

Source: youtube.com

- Verbose protocols like XML and JSON send a *lot* of data in a single transaction = more money for the carrier
- ★ If you prefer to think in HTTP verbs, then consider using protocols like CoAP
 - HTTP verbs in binary

Cyber Security Issues

- Regardless of your application, you cannot ignore cyber security these days
- * Lots of bad actors out there to cause trouble
 - ▶ Like the DDoS from IoT devices against DNS servers last October
- * At a minimum, encrypt the links
 - Using the radio for link encryption or via TLS/DTLS for E2E encryption
- Use code signing and certificates to verify source of updates and identities of devices
 - Provisioning 1000s of devices will be an issue
- * The fog model is easier to secure than the cloud model
 - You limit the attack surface

Which Messaging API to Use?

- * It depends on your device and application
- If you're looking for the broadest support, then use MQTT
 - Most of the major IoT frameworks support it
 - Some pub/sub approaches can be confusing because of the requirement for a broker

Source: aaronroth.net

- If you want an web-like model, then use CoAP on the device and REST for transfers from the border routers to the cloud
 - Remember to use secure links across the cloud infrastructure
- * There are a lot of wireless options, most support IP
 - So, most of the message middleware will work fine

Summary

- * The IoT/IIoT has no shortage of offerings in the way of options
- * Standards such as MQTT, DDS, REST, XMPP provide some hope for inter-operability
 - Wireless standards such as BLE, Wi-Fi and IEEE 802.15.4 help deal with physical connectivity
- ★ Use of proprietary protocols or wireless solutions will work, but probably with vendor lock-in
- * Consider attack surfaces, open-source availability and transmission costs in your messaging decision making process

