How to Become an lo!|
Developer (and Have Fun!)

Justin Mclean
Class Software

Email: justin@classsoftware.com
Twitter: @justinmclean

APACHECON

North America

mailto:justin@classsoftware.com

Who am |?

e Freelance Developer - programming for 25 years

* |ncubator PMC and Apache Flex PMC plus a few others, Apache
member and a mentor for several incubating projects

e Run loT meetup in Sydney Australia

How | got here

Been coding since the 80s

Started on low level machine code and C programming
Worked on a few early “loT” projects

Internet come along

Open Source Hardware come along

First conference talk on Arduino

Started loT Sydney Meetup

e Back to coding in C and working on hardware

Things have changed

o Access to low cost easy to program hardware

e Constrained hardware has more memory and speed
e “Modern” development tools and IDEs

* Some standardisation

e Open Source hardware community

 Open Source libraries

Hardware is hard

e Can’t revert changes easily or make changes once deployed
e People underestimate time taken of developing firmware

e |t harder to debug and find errors with hardware

 Hard to update firmware

® Security Issues

e Power iIssues

So you want to become an loT
developer?

One name different jobs

* You can be an loT developer without touching the hardware i.e
big data project

* |'m focussing on the embedded / hardware side but form a
software point of view

Play with toys

e Get yourself an Arduino or Raspberry Pi or similar

e Find yourself a project
- simple as blinking leds
- or monitoring the environment
- or displaying messages
- or logging your beer brewing

NEXEXIXEXIXIXEY] [XEXIN NN

| . ANALOG N @
HDODonY Hunanet g

‘®00 trafficl ghtsblink | Arduino L.0.5

trafficlighesblink

void setup()

{
pinMode(RED1, QUTPUT);
pinMode(RED2, OUTPUT);
pinMode(ORANGEL, OUTPUT);
pinMode(CORANGEZ, OUTPUT);
pinMode(GREEN1, OUTPUT);
pinMode(GREENZ, OUTPUT);

¥

void loop()
¢

Were to get stuff

o Adafruit
https://www.adafruit.com

e SparkFun
https://www.sparkfun.com

* Seeed Studio
https://www.seeedstudio.com

e eBay but you generally get what you pay for!

https://www.seeedstudio.com

Create a simple circuit

Get a bead board and wires and make a simple circuit
Try and create your prototype
A multimeter may help here

Depending on your style it may not look pretty

ovoao.l..a:.. ‘#‘
1 | ALE g

2| &% xJJ.hA.r wna—)«ﬁvﬂ.*..mm‘_.” L&
alslalala !—J wh=l=lz 3 |
14 505k nlela. alslslsls
5 s12080:ls .. | alalalalas &
, Shaki # VI

-
e
(S
O
O
O
(C
<’
v
aa

Use breakout boards

Can get a lot of pre-assembled boards

Easy to wire up to a breadboard
Often use standard interfaces like 12C or SPI
Think of them as lego blocks

hx}lénb 419
118800

Breakout Board

Learn how to solder

* |t easier than you think

e Use the right tip and solder

e Use a flux pen

* | earn how to correct mistakes

o Start with large through hole items
o Use sockets for ICs

e Use solder braid

1@ ® "« .-

4

F{@@®0 < e 0 /0
VN L O ~ [
. . ® " -]

N

Prototype

Learn a new language

e |f you don’t know it learn C

e Other languages exist on embedded platforms but C is most
common

e May need forget some of what you know
e Cis not as complex as you may think

e Modern C style is a little different

1int LED = 10;
2

3 void setup() {

4 pinMode(LED, OUTPUT);

>}

b

7 void loop() {

8 digitalWrite(LED, LOW);
9 delay(500);

10 digitalWrite(LED, HIGH);
11 delay(500);

12 }

Forget what you know

SECOND EDITION

THE

ns!

&

-

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

Tl o

Read the classics

OREILLY"

21st Century %

C TIPS FROM THE
NEW SCHOOL

Ben Klemens

~ Or a more modern book

C has improved

e K&R C, C89, C99, C11
 Well perhaps only a little :-)

e Some useful C99 features:
- bool and int types
- auto sizing of arrays
- floating point numbers
- inline functions

Optimise your code later

Compiler is good at optimising code
Only optimise if you need to
Better to keep code simple and readable

Refresh yourself on operator order

Code carefully

May be best to avoid dynamic allocation of memory
Use pointers sensibly

Break it up - can always inline later

Encapsulate the hard bits

Used sized ints

Take care with strings

Document your code - doxygen

Size matters

e You can do a lot in a small amount of code

* Arduino web server in about 20 lines of code compiles to 2K

47 byte gen(int t)

48 {

49 return t * ((t >> shiftl | t >> shift2) & mask & t >> shift3);
50 %

Generative Formula

Know some electronic basics

Focus on digital logic 5V or 3.3V=1and 0V =20
Current limiting leds

Transistors for switching
Filtering caps
Pull up / pull down resistors

Voltage divider

Make a board

Why? Making physical stuft is fun!

Start off with basic PCB layout program like Fritzing
It has bread board / circuit and PCB layout

Don’t cross the tracks

Use vias where needed

Copper and ground fill

Read the data sheets

Learn to look for important values

Don’t worry if you don’t understand all of it
Often contain sample circuits - bonus!

Can contain import timing information

Can vary in quality

Learn Schematic basics

e Know the basic symbols

e Know how to match up pins on ICs

U4 Accelerometer 6 axis

nCSs
FSYNC

AUX_DA
AUX CL
ADO

RESV 19
RESV 20

GND
EGP

GND

VDD
VDDIO

REGOUT

RESV 1

NC 2
NC 3
NC 4
NC §
NC 6

NC 14

NC 15

NC 16—
NC 17 e

R52
OR
MPU PWR
|
C48100n
100n
GND

Schematic

Fritzing
http://fritzing.org/home/
Very easy to use
Easy export of files
Handles surface mount and through hole components

Comes with a decent library of footprints
Auto route not very useful

Breadboard view not compact

AR N e I T R RN TTBENRIIE" s
x

£E Breadboard “M- Schematic

.

..
. B Quipat
LR B L - .. 0[0.....00 wl F
L R I 00"' - .. LR B B B < sl LLeEEee e e . N
L R B L] L L B 00' - 1' b N
LR .-,
L .-,

LA R B AR BN LA
.- L L L
.- .. v .. -
.- .. v .. -
.. -

LR B B L
L R
L B B L
L B B - L L
-

. .
. .
L . . -
L R e - L I
-

v.4

R e I - - - - ... 5 T
Lc...c...c... .. 0'00(..... 1wn‘mm'm'c.umcap“m'

L L L L L L L L L L L L L L

Properties

fami'y capaciter [bid rectional]

woltage 6.3V |
pac<age 100 mil ITHT, multilayer| et
cepacicance 100nF |»
paté# |

Tegs
capacitor. ceremic capacitor, fritz ng core

fritzing

6o

Share

arrscosin 100% () @

Breadboard View

[PCB View]

trafficlighl.3_th.fzz - Fritzing -

‘&N

._O.Qn Xy

o ‘
- E
.hVAnvn axy 1 1 m

b o

o
C

3 .01 -
900
> O +
/ DHM OO
T — X
mnwam. ﬁmw.* MMHHW \
b o

4 B
H 1o o

;G W e L] o
AR AN Ei LX e

L
< o

000000

ey

v

XXX XX

b
9

LEDL
LEDZ
LED3
o A nu

1
|
1
t
N,
r, \

&

O
O
O
O
O

(X8

. LEDH4

‘ (@)
'\ - -
v "’ lv
) N

L 2 3456k 7 889
Traffic Light Shield
vl.3
Justin NMclean
su.info/trafficlight

(

‘*iaﬁe{?;ﬁ€{?;@gﬁéi?ﬂﬁl
(eJelelelelelelelele)

QPP 1
PN |
RSO

v

90C0C 000000

B
C
D

PCB View

.

iooooooocea

Rul*lI+IR1

W0000000000 Wi
20000000000 o ios Loz
<QO00000000 [frst + 11 + ke
Q0000000800 '
50000000000

Q0000000 2@

223 845L 789 10
Traffic Light Shield - 2

vi.3
Justin Aclean

cosw.info/trafficlight o

Have the right tools

* Get a good soldering iron
e Multimeter

e Side cutters

e Flux pen

e Solder braid
e Heat gun

¢

Multimeter

It works!

Made with
fritzing

UR2. TCARUS |/

Y sote v2.D

S
'

]
R
w

JOOp

N ™
-
al i
P
.~
| ——
->

-

INGTOS

J2dip-
S\

m O
N A A

JRATRINY N1

C

_ - 0 .
u ﬁ ftdt» 1 TSLES50%

ﬁ:Z. l’.lhi!h.n &ﬂ ‘4 A | J

’
e .,‘, '
— :ﬁcsl |C3o
s__ws N '

™\
d
871 minnNaN

10 0 (
¥1d

ICS237 ! C5 t:SBLLO
rs

Don't go small too quickly

Temptation to use small cheap surface mount components right
away

Keeps the cost down but means the device may be hard to debug

Increase time (or makes it impossible) to make moditications to the
board

Boards may have higher defect rates

Physical copy and paste errors

Test the hardware

e Have some way of testing the hardware - usually custom program
or part of the startup sequence

 Have physical test points on the board

e Make a testing rig if you need to test a number of boards

Don’t use the hardware

e Compile and test your code locally

e Standard C will work just about everywhere

e Some platforms (like Apache Mynewt) have simulators
e Stub out things that are hardware dependant

e Can be a faster workflow to work this

e Can run unit tests easily

Test on the hardware

e You need to test on real hardware

e Most modern platforms you can debug, set breakpoints, step line
by line etc etc

* Make sure you test release builds as well as debug ones

Watch your memory

e While 32K or 128K sounds like a lot you may run out off memory

e Avoid dynamically allocating memory it possible
* Tools / RTOS generally have a way of showing memory usage
e Perform a burn in test

* Make sure memory doesn’t climb over time

Software is always at fault

It something doesn’t work it’s likely to be the software not the
hardware

It you can’t find the bug it still likely to be the software

It likely to be in your code not the 3rd party library used by 1000’s
of people

No changing libraries will not fix it

Yes it is a bug in your code

Except when it's the hardware

e Hardware works except when it doesn't

* |f you lucky it will be DOA and do nothing or have a short and
consume all the power

* |f you are unlucky it will mostly work.

e Examples I've recently seen:
- unmarked GPS antenna passive not active
- crystals rotated 90 deg
- Incorrect accelerometer circuit

Log all the things

e Often hard to know what hardware is doing at any point of time
* | og what going on when debugging

* Have some way of viewing the logs (especially when the debugger
Is connected)

e Remove most of the logging (but not all) in production

Blinkly lights

e Use indicator leds to indicate status

e But don’t be annoying

Code on bare metal

e All the memory and speed is yours!
* Nothing else gets in the way
o All the bugs are yours!

e Some things can be more complex

Use an RTOS

Usually have some form of simple threading or tasks
Breaking program up into tasks can simplify code
Take care with shared resources

May provide other benetfits re power consumption
Be careful of vendor lock-in

Can be more abstract / complex in some cases

Look at documentation and support options

The not so fun bits :-(

OTA Updates

e How do you update your device?

e May be a lot harder than you think
e Bootloader

e Check and download new images

* Where do you store them?

e Verity images

e Swap between images

e Use an RTOS that supports all of this

Security

e Can be hard on constrained devices
e May not be able to do TLS due to memory or speed constraints

e Select platforms that have built in crypto or can off load crypto to
another chip

Power

Power may be a limiting factor
Need to sleep / deep sleep / turn off all devices

Time to wake up
RTOS may help here

My journey

I've learn lots of new skills
Met a lot of nice people

Be involved in a couple of communities
Had a lot of fun
Hope your journey will be the same

