
How to Become an IoT
Developer (and Have Fun!)

Justin Mclean
Class Software

Email: justin@classsoftware.com
Twitter: @justinmclean

mailto:justin@classsoftware.com

Who am I?
• Freelance Developer - programming for 25 years
• Incubator PMC and Apache Flex PMC plus a few others, Apache

member and a mentor for several incubating projects
• Run IoT meetup in Sydney Australia

How I got here
• Been coding since the 80s
• Started on low level machine code and C programming
• Worked on a few early “IoT” projects
• Internet come along
• Open Source Hardware come along
• First conference talk on Arduino
• Started IoT Sydney Meetup
• Back to coding in C and working on hardware

Things have changed
• Access to low cost easy to program hardware
• Constrained hardware has more memory and speed
• “Modern” development tools and IDEs
• Some standardisation
• Open Source hardware community
• Open Source libraries

Hardware is hard
• Can’t revert changes easily or make changes once deployed
• People underestimate time taken of developing firmware
• It harder to debug and find errors with hardware
• Hard to update firmware
• Security issues
• Power issues

So you want to become an IoT
developer?

One name different jobs
• You can be an IoT developer without touching the hardware i.e

big data project
• I’m focussing on the embedded / hardware side but form a

software point of view

Play with toys
• Get yourself an Arduino or Raspberry Pi or similar
• Find yourself a project 

- simple as blinking leds 
- or monitoring the environment 
- or displaying messages 
- or logging your beer brewing

Arduino

Arduino

Were to get stuff
• Adafruit 

https://www.adafruit.com
• SparkFun 

https://www.sparkfun.com
• Seeed Studio 

https://www.seeedstudio.com
• eBay but you generally get what you pay for!

https://www.seeedstudio.com

Create a simple circuit
• Get a bead board and wires and make a simple circuit
• Try and create your prototype
• A multimeter may help here
• Depending on your style it may not look pretty

Breadboard

Use breakout boards
• Can get a lot of pre-assembled boards
• Easy to wire up to a breadboard
• Often use standard interfaces like I2C or SPI
• Think of them as lego blocks

Breakout Board

Learn how to solder
• It easier than you think
• Use the right tip and solder
• Use a flux pen
• Learn how to correct mistakes
• Start with large through hole items
• Use sockets for ICs
• Use solder braid

Prototype

Learn a new language
• If you don’t know it learn C
• Other languages exist on embedded platforms but C is most

common
• May need forget some of what you know
• C is not as complex as you may think
• Modern C style is a little different

Forget what you know

Read the classics

Or a more modern book

C has improved
• K&R C, C89, C99, C11
• Well perhaps only a little :-)
• Some useful C99 features: 

- bool and int types 
- auto sizing of arrays 
- floating point numbers 
- inline functions

Optimise your code later
• Compiler is good at optimising code
• Only optimise if you need to
• Better to keep code simple and readable
• Refresh yourself on operator order

Code carefully
• May be best to avoid dynamic allocation of memory
• Use pointers sensibly
• Break it up - can always inline later
• Encapsulate the hard bits
• Used sized ints
• Take care with strings
• Document your code - doxygen

Size matters
• You can do a lot in a small amount of code
• Arduino web server in about 20 lines of code compiles to 2K

Generative Formula

Know some electronic basics
• Focus on digital logic 5V or 3.3V = 1 and 0V = 0
• Current limiting leds
• Transistors for switching
• Filtering caps
• Pull up / pull down resistors
• Voltage divider

Make a board
• Why? Making physical stuff is fun!
• Start off with basic PCB layout program like Fritzing
• It has bread board / circuit and PCB layout
• Don’t cross the tracks
• Use vias where needed
• Copper and ground fill

Read the data sheets
• Learn to look for important values
• Don’t worry if you don’t understand all of it
• Often contain sample circuits - bonus!
• Can contain import timing information
• Can vary in quality

Learn Schematic basics
• Know the basic symbols
• Know how to match up pins on ICs

Schematic

Fritzing
• http://fritzing.org/home/
• Very easy to use
• Easy export of files
• Handles surface mount and through hole components
• Comes with a decent library of footprints
• Auto route not very useful
• Breadboard view not compact

Breadboard View

PCB View

Boards

Have the right tools
• Get a good soldering iron
• Multimeter
• Side cutters
• Flux pen
• Solder braid
• Heat gun

Multimeter

It works!

Not just basic boards

Don't go small too quickly
• Temptation to use small cheap surface mount components right

away
• Keeps the cost down but means the device may be hard to debug
• Increase time (or makes it impossible) to make modifications to the

board
• Boards may have higher defect rates
• Physical copy and paste errors

Test the hardware
• Have some way of testing the hardware - usually custom program

or part of the startup sequence
• Have physical test points on the board
• Make a testing rig if you need to test a number of boards

Don’t use the hardware
• Compile and test your code locally
• Standard C will work just about everywhere
• Some platforms (like Apache Mynewt) have simulators
• Stub out things that are hardware dependant
• Can be a faster workflow to work this
• Can run unit tests easily

Test on the hardware
• You need to test on real hardware
• Most modern platforms you can debug, set breakpoints, step line

by line etc etc
• Make sure you test release builds as well as debug ones

Watch your memory
• While 32K or 128K sounds like a lot you may run out off memory
• Avoid dynamically allocating memory if possible
• Tools / RTOS generally have a way of showing memory usage
• Perform a burn in test
• Make sure memory doesn’t climb over time

Software is always at fault
• If something doesn’t work it’s likely to be the software not the

hardware
• If you can’t find the bug it still likely to be the software
• It likely to be in your code not the 3rd party library used by 1000’s

of people
• No changing libraries will not fix it
• Yes it is a bug in your code

Except when it’s the hardware
• Hardware works except when it doesn't
• If you lucky it will be DOA and do nothing or have a short and

consume all the power
• If you are unlucky it will mostly work.
• Examples I’ve recently seen: 

- unmarked GPS antenna passive not active 
- crystals rotated 90 deg 
- incorrect accelerometer circuit

Log all the things
• Often hard to know what hardware is doing at any point of time
• Log what going on when debugging
• Have some way of viewing the logs (especially when the debugger

is connected)
• Remove most of the logging (but not all) in production

Blinkly lights
• Use indicator leds to indicate status
• But don’t be annoying

Code on bare metal
• All the memory and speed is yours!
• Nothing else gets in the way
• All the bugs are yours!
• Some things can be more complex

Use an RTOS
• Usually have some form of simple threading or tasks
• Breaking program up into tasks can simplify code
• Take care with shared resources
• May provide other benefits re power consumption
• Be careful of vendor lock-in
• Can be more abstract / complex in some cases
• Look at documentation and support options

The not so fun bits :-(

OTA Updates
• How do you update your device?
• May be a lot harder than you think
• Bootloader
• Check and download new images
• Where do you store them?
• Verify images
• Swap between images
• Use an RTOS that supports all of this

Security
• Can be hard on constrained devices
• May not be able to do TLS due to memory or speed constraints
• Select platforms that have built in crypto or can off load crypto to

another chip

Power
• Power may be a limiting factor
• Need to sleep / deep sleep / turn off all devices
• Time to wake up
• RTOS may help here

My journey
• I’ve learn lots of new skills
• Met a lot of nice people
• Be involved in a couple of communities
• Had a lot of fun
• Hope your journey will be the same

