
Introduction to

Virtio Crypto Device
arei.gonglei@huawei.com

xin.zeng@intel.com

mailto:arei.gonglei@huawei.com
mailto:xin.zeng@intel.com

Agenda

• Overview of virtio crypto device

• Virtio crypto device spec

• Introduction to software implementation

• WIP and future plans

Cryptography in cloud

• Used widely

– Wireless, telecom, data center, enterprise systems

• Compute-intensive tasks

• Hardware accelerators support virtualization are

offered with high performance, but

– Limited VF/PF number for VMs

– Different VF drivers needed

Why Virtio-crypto?

• Friendly Cloud Characteristic
– Hardware cryptography device agnostic

– Live migration friendly

– Unified device interface and frontend driver as well

• Good scalability

• Low cost in software

What’s virtio-crypto device

 A virtual cryptography device under

virtio device framework

 Provides a set of unified operation

interfaces for different cryptography

services

 Contributions from Huawei, Intel, IBM,

RedHat, SUSE, ARM, etc… in

community

Spec overview (in RFC)

Device type • Virtio Crypto Device

Device ID • 0x1054

Device specific feature bits • Multiplexing mode support for symmetric service
• Indirect descriptors support

Device specific configuration • Supported maximum queues
• Detailed crypto algorithms mask bits
• Misc fields such as maximum key length supported

Virtqueue design • 1 control queue for session/control request
• 1 or multi data queues for service request

Defined cryptography services • Symmetric
• Asymmetric

Virtqueue design

• One control queue

– Session management for symmetric service

– Facilitate control operations for device

• One or more data queues

– Transport channel for crypto service requests

Request of control queue

• Consists of two parts

– General header: virtio_crypto_ctrl_header

– Service specific fields

• Fixed size service-specific fields in session mode

• Variable size in multiplexing mode

Request of data queue

• Consists of two parts

– General header: virtio_crypto_op_header

– Service specific fields

• Fixed size service-specific fields in session mode

• Variable size in multiplexing mode

Device specific configuration
struct virtio_crypto_config {
 le32 status;
 le32 max_dataqueues;
 le32 crypto_services;
 /* Detailed algorithms mask */
 le32 cipher_algo_l;
 le32 cipher_algo_h;
 le32 hash_algo;
 le32 mac_algo_l;
 le32 mac_algo_h;
 le32 aead_algo;
 /* Maximum length of cipher key in bytes */
 le32 max_cipher_key_len;
 /* Maximum length of authenticated key in bytes */
 le32 max_auth_key_len;
 le32 reserved;
 le64 max_size;
};

•status is used to show whether the device is ready to work or not
•max_dataqueues is the maximum number of data virtqueues
exposed by the device.
•crypto_services crypto service offered
•cipher_algo_l CIPHER algorithms bits 0-31
•cipher_algo_h CIPHER algorithms bits 32-63
 … …
•max_cipher_key_len is the maximum length of cipher key
supported by the device
•max_auth_key_len is the maximum length of authenticated key
supported by the device
•max_size is the maximum size of each crypto request’s content
supported by the device

Symmetric crypto service

• Working modes
– Session mode

• Efficient for those numerous requests with same context

– Multiplexing mode
• To support stateless mode as well as session mode

• Stateless mode is proposed to reduce cost of session creation for those one-shot requests

• Controlled by feature bits

• Defined services & operations
– Cipher

• Encryption operation/Decryption operation

– HASH

– MAC

– AEAD
• Encryption operation/Decryption operation

Asymmetric crypto service

• No session concept

• Requests are conveyed in data queue

• Defined service operations

– Signature/Verification
• RSA, DSA, ECDSA

– Encryption/Decryption
• RSA

– Key Generation
• RSA, DSA, EC

– Key Exchange
• DH, ECDH

Sequence diagram – Session operations
sd Session operations

Guest: crypto Apps Guest: virtio-crypto

driver

Qemu: virtio-crypto

device

Crypto Operations... [skip]

create session(algo, key, auth_key, etc.)

padding structures of session()

padding request of control v irtqueue(session...)

v irtqueue_add_buf()

v irtqueue_kick()

handling request of controlq

and creating a session()

setting session identification()

v irtqueue_notify()

recording session identification()

return a v alid session()

close session(session_id)

padding request of control v irtqueue(session_id)

v irtuque_kick()

close session and clear

resource(session_id)

v irtqueue_notify()

return()

Sequence diagram – Service operations
sd crypto operations

Guest: crypto Apps Frontend:

virtio-crypto driver

Backend:

virtio-crypto device

alt Symmetric serv ices with session mode

sending crypto requests()

padding crypto request of dataq()

putting in data v irtqueue()

kick()

parsing params from data v irtqueue()

getting session id and find the

corresponding session()

inv oking crypto backend

implementation to do crypto

operations()

updating used_ring's information()

notify()

updating crypto results()

polling crypto results - asynchronous methond()

Software implementation diagram

Guest

Virtio-crypto driver

Crypto APPs

LKCF

• In guest
– virtio-crypto user space pmd driver

– LKCF based kernel space driver

• In host
– virtio-crypto device inside QEMU

– Cryptodev backend object inside

QEMU which could be:

• A cryptodev builtin backend

• A cryptodev vhost backend

– A vhost server implementation(vhost-

user or vhost-kernel)

 Host

Virtio-crypto PMD

 Qemu Virtio-crypto device

Cryptodev backend

Cryptodev-vhost

Accelerators

(SW, HW)

Cryptodev-builtin

SW Crypto library

Cryptodev-vhost

implementation

Virtio Cryptodev backend in host

• An user creatable object in QEMU
– Commands: -object/object-add/object_add

– Example: #./qemu-system-x86_64 -object cryptodev-backend,id=cy0

• Easily to be realized with different child

objects

• Key code:

static const TypeInfo cryptodev_backend_info = {

 .name = TYPE_CRYPTODEV_BACKEND,

 .parent = TYPE_OBJECT,

 .instance_size = sizeof(CryptoDevBackend),

 .instance_init = cryptodev_backend_instance_init,

 .instance_finalize = cryptodev_backend_finalize,

 .class_size = sizeof(CryptoDevBackendClass),

 .class_init = cryptodev_backend_class_init,

 .interfaces = (InterfaceInfo[]) {

 { TYPE_USER_CREATABLE },

 { }

 }

Cryptodev backend

Qemu Object

Cryptodev built-in

backend

Cryptodev vhost

backend

Cryptodev builtin backend

•Cryptodev builtin backend

Virtio-crypto device

libgcrypt

driver

qcrypto interface

libnettle

driver

AF_ALG

driver

libgcrypt libnettle LKCF

Qcrypto

builtin

driver

• A child of cryptodev backend

• Interfaced to QEMU crypto APIs

• Requests are consumed by
underlying crypto modules

• Performance is not ideal for
symmetric service

• Examples:
 # qemu-system-x86_64 \

 [...] \

 -object cryptodev-backend-builtin,id=cryptodev0 \

 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \

 [...]

Cryptodev vhost backend

•Cryptodev vhost
backend

Virtio-crypto device

Vhost-crypto-

kernel

Linux kernel

Vhost user

server (DPDK,

ODP or

libvhost)

Vhost-crypto-

user

• A child of cryptodev backend

• Two kinds of implementations: vhost
kernel client and vhost user client

• Vhost user server can be integrated with
DPDK, ODP or libvhost

• Better performance, can be used in
production environment

• Examples:
 # qemu-system-x86_64 \

 [...] \

 -chardev socket,id=charcrypto0,path=/your/path/socket0

 -object cryptodev-vhost-user,id=cryptodev0 ,chardev=charcrypto0\

 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \

 [...]

WIP and Plans

Virtio-crypto specification for

Symmetric and Asymmetric

services

LKCF based Virtio-crypto

device driver (symmetric)

QEMU -device virtio-crypto

QEMU -object cryptodev-

backend-builtin (symmetric)

QEMU -object cryptodev-

vhost-user

DPDK virtio-crypto-pmd

DPDK Vhost-user for virtio-

crypto

Spec Host Guest

Patches not yet posted

Patches not yet merged

Support more algorithms,

multi data queue, live

migration etc.

Not yet implemented

Patches merged

LKCF based Virtio-crypto

device driver (asymmetric)
QEMU -object cryptodev-

backend-builtin (asymmetric)

More services such as KDF,

PRIMITIVE.

Summary

• Virtio crypto device is a viable solution for cloud

• Virtio crypto device spec has been pushed to virtio

community, defined services include:

– Symmetric crypto service

– Asymmetric crypto service

• The groundwork of implementation has been accepted

• The implementation for more service such as asym crypto

service and algorithms are in progress.

Questions?

• For more information about virtio-crypto:

– http://qemu-project.org/Features/VirtioCrypto

• For more information about DPDK:

– http://dpdk.org/

• For more information about Intel® QAT:

– www.intel.com/quickassist

• Welcome contributions!

http://qemu-project.org/Features/VirtioCrypto
http://qemu-project.org/Features/VirtioCrypto
http://qemu-project.org/Features/VirtioCrypto
http://dpdk.org/
http://dpdk.org/
http://www.intel.com/quickassist

