
Aspect Ratio Test Slide

INTRODUCING APACHE COUCHDB 2.0
by Jan Lehnardt at ApacheCon EU 2016 in Sevilla

JAN LEHNARDT

➤CouchDB since 2006

➤Apache CouchDB since
2008

➤PMC Chair & VP of
CouchDB since 2011

➤Longest active contributor

➤CEO at Neighbourhoodie
Software in Berlin

Joined CouchDB in 2006, longest standing contributor

Have done everything from evangelising, community work, core engineering.

Still do all of the above

* * *

We shipped 2.0 on Sept. 20th, fulfilling the 10+ year development history of CouchDB

THE THREE USE-CASES OF COUCHDB

1. GENERAL PURPOSE DATABASE
2. HIGHLY AVAILABLE & SCALABLE
BIG DATA CLUSTER
3. SEAMLESS MOBILE TO CLOUD
DATA-SYNCHRONISATION

1. GENERAL PURPOSE DATABASE
2. HIGHLY AVAILABLE & SCALABLE
BIG DATA CLUSTER
3. SEAMLESS MOBILE TO CLOUD
DATA-SYNCHRONISATION

1. GENERAL PURPOSE DATABASE
2. HIGHLY AVAILABLE & SCALABLE
BIG DATA CLUSTER
3. SEAMLESS MOBILE TO CLOUD
DATA-SYNCHRONISATION

MIX AND MATCH ANY ONE

MIX AND MATCH ANY ONE
DATA SYNCHRONISATION BETWEEN

ALL USE-CASES

MOBILE TO CLOUD DATA SYNC

MOST MOBILE DATA IS OFFLINE
for battery power reasons

ALMOST 60% OF MOBILE IS ON 2G
Google Chrome Dev Summit last week

CouchDB helps you to build
compelling applications in
the face of spotty networks.

CouchDB helps you to
bring mobile data into the

Cloud for Big Data analysis.

GENERAL PURPOSE DATABASE

BASICS

JSON cuts ORM

BASICS

➤ HTTP

JSON cuts ORM

BASICS

➤ HTTP
➤ JSON

JSON cuts ORM

BASICS

➤ HTTP
➤ JSON

➤ Documents

JSON cuts ORM

BASICS

➤ HTTP
➤ JSON

➤ Documents
➤ Unique IDs, content

addressable revisions

JSON cuts ORM

BASICS

MR: unique

API compatible

- design from 10 years ago

- other databases have features that start failing unpredictably at scale

- CouchDB doesn’t have those features in the first place

BASICS

➤ Incremental, Persistent Map / Reduce for queries

MR: unique

API compatible

- design from 10 years ago

- other databases have features that start failing unpredictably at scale

- CouchDB doesn’t have those features in the first place

BASICS

➤ Incremental, Persistent Map / Reduce for queries
➤ Changes, “what happened since?”, think `git log` but a real-

time stream for your database

MR: unique

API compatible

- design from 10 years ago

- other databases have features that start failing unpredictably at scale

- CouchDB doesn’t have those features in the first place

BASICS

➤ Incremental, Persistent Map / Reduce for queries
➤ Changes, “what happened since?”, think `git log` but a real-

time stream for your database
➤ API Compatible between single node and cluster, apps can grow

without rewrite

MR: unique

API compatible

- design from 10 years ago

- other databases have features that start failing unpredictably at scale

- CouchDB doesn’t have those features in the first place

BASICS

➤ Incremental, Persistent Map / Reduce for queries
➤ Changes, “what happened since?”, think `git log` but a real-

time stream for your database
➤ API Compatible between single node and cluster, apps can grow

without rewrite
➤ trade-off: no features that wouldn’t scale in single node

version

MR: unique

API compatible

- design from 10 years ago

- other databases have features that start failing unpredictably at scale

- CouchDB doesn’t have those features in the first place

DESIGN DECISIONS

DESIGN DECISIONS

➤ Data safety > *

DESIGN DECISIONS

➤ Data safety > *
➤ Fault tolerance

DESIGN DECISIONS

➤ Data safety > *
➤ Fault tolerance

➤ Erlang: only one request
can fail, not the whole
server

DESIGN DECISIONS

➤ Data safety > *
➤ Fault tolerance

➤ Erlang: only one request
can fail, not the whole
server

➤ Crash-only design

DESIGN DECISIONS

➤ Data safety > *
➤ Fault tolerance

➤ Erlang: only one request
can fail, not the whole
server

➤ Crash-only design
➤ Everything is resumable

DESIGN DECISIONS

➤ Data safety > *
➤ Fault tolerance

➤ Erlang: only one request
can fail, not the whole
server

➤ Crash-only design
➤ Everything is resumable
➤ Everything is idempotent

Web / API
Server

App Server

CouchDB

GENERAL PURPOSE DATABASE

Web / API
Server

App Server

CouchDB

✅

GENERAL PURPOSE DATABASE

Web / API
Server

App Server

CouchDB

BONUS 1: GEO DISTRIBUTION
Web / API

Server

App Server

CouchDB

EUUS

Sync

Web / API
Server

App Server

CouchDB

BONUS: EXTRA
Web / API

Server

App Server

CouchDB

AfricaUS

Web / API
Server

App Server

CouchDB

EU

Sync Sync

CouchDB

Web / API
Server

App Server

SCALABLE CLUSTER

CouchDB
CouchDB
Cluster

CouchDB

Web / API
Server

App Server ✅

SCALABLE CLUSTER

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

Web / API
Server

App Server

CouchDB

Web / API
Server

App Server

SCALABLE CLUSTER

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDB

Web / API
Server

App Server

SCALABLE CLUSTER

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDBCouchDB

Web / API
Server

App Server

SCALABLE CLUSTER

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDBCouchDBCouchDB

Web / API
Server

App Server

SCALABLE CLUSTER

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDBCouchDBCouchDB

Web / API
Server

App Server

SCALABLE CLUSTER

CouchDB
CouchDB
Cluster

✅

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

CouchDB

Web / API
Server

App Server

BONUS STILL THERE

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

CouchDBCouchDB
CouchDB
Cluster

EUUS

Sync

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDB CouchDB

Web / API
Server

App Server

BONUS STILL THERE

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

CouchDBCouchDB
CouchDB
Cluster

EUUS

Sync

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDBCouchDBCouchDB CouchDB

Web / API
Server

App Server

BONUS STILL THERE

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

CouchDBCouchDB
CouchDB
Cluster

EUUS

Sync

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDBCouchDBCouchDBCouchDBCouchDB CouchDB

Web / API
Server

App Server

BONUS STILL THERE

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

CouchDBCouchDB
CouchDB
Cluster

EUUS

Sync

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

Web / API
Server

App Server

CouchDBCouchDBCouchDBCouchDBCouchDBCouchDB CouchDB

Web / API
Server

App Server

BONUS STILL THERE

CouchDB
CouchDB
Cluster

Web / API
Server

App Server

CouchDBCouchDB
CouchDB
Cluster

EUUS

✅
Sync

MOBILE

CouchDBCouchDB
CouchDB
Cluster

📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱

we started offline first

MOBILE

✅
CouchDBCouchDB

CouchDB
Cluster

📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱

we started offline first

BONUS

CouchDBCouchDB
CouchDB
Cluster

📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱

BONUS

CouchDBCouchDB
CouchDB
Cluster

📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱

MOBILE

CouchDBCouchDB
CouchDB
Cluster

📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱

CouchDBCouchDB
CouchDB
Cluster

EUUS

Sync

MOBILE

✅
CouchDBCouchDB

CouchDB
Cluster

📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱📱

CouchDBCouchDB
CouchDB
Cluster

EUUS

Sync

COUCHDB 1.X

Data Storage Layer

Synchronisation
Protocol

Persistent Map/
Reduce Indexes

HTTP Layer

COUCHDB 2.X

Data Storage Layer

Synchronisation
Protocol Map/Reduce

HTTP Layer

Cluster Layer

Query Language

POUCHDB

Persistent In-Browser Storage

Synchronisation
Protocol Map/Reduce

Native JavaScript API

Query Language

MOBILE

Persistent On-Device Storage

Synchronisation
Protocol

Persistent Map/
Reduce Indexes

Native iOS & Android APIs

TOPOLOGIES

solo

could be single node instance or cluster installation

hot spare

explain replication a bit

one way, resume, delta, conflicts

REPLICATION DETAIL INTERLUDE

Database Database

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Database Database

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database Database

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A] Doc 1 [E, D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A] Doc 1 [E, D, C, B, A]

Doc 1 [F, E, D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A] Doc 1 [E, D, C, B, A]

Doc 1 [F, E, D, C, B, A] Doc 1 [H, E, D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A] Doc 1 [E, D, C, B, A]

Doc 1 [F, E, D, C, B, A] Doc 1 [H, E, D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A] Doc 1 [E, D, C, B, A]

Doc 1 [F, E, D, C, B, A] Doc 1 [H, E, D, C, B, A]

Doc 1 [[F, H], E, D, C, B, A]

replication details

REPLICATION DETAIL INTERLUDE

Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A] Doc 1 [E, D, C, B, A]

Doc 1 [F, E, D, C, B, A] Doc 1 [H, E, D, C, B, A]

Doc 1 [[F, H], E, D, C, B, A]

{

		_id:	"1",

		_conflicts:	[F,	H]

}

replication details

SYNCHRONISATION PROTOCOL
Come see my talk tomorrow 12:00:
“Apache CouchDB Sync Deep Dive”

Or Thursday 10:30
if you are still here for ApacheCon EU

We will learn about identity, versioning schemes, revision trees, conflict detection and resolution and the by sequence index

read-only secondaries

multi-primary

multi-primary

us-east us-west

eu-west

multi-primary

Sevilla New York

Tokyo

multi-primary

Tree

City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9

Tree

City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9

County 1 County 2 County 3

Tree

State 2State 1

City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9

County 1 County 2 County 3

Tree

State 2State 1

City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9

County 1 County 2 County 3

Country

Tree

Till 1 Till 2 Till 3

Store 1

Till 4 Till 5 City 6

Store 2

Region 1 Region 2

Till 7 Till 8 Till 9

Store 3

Corporate

Tree

Mesh

c.f. Internet of Things / Industry of Things

CLUSTER INTERNALS

Cluster

- Amazon Dynamo

- Cluster -> nodes

- Database -> shards

- No Primary Node

	 - any node can answer any request

	 	 - worst case proxies from other nodes

	 	 - adds a hop, possible latency optimisation with “cluster aware” client libraries

- Consistency: R/W = 1,2,3,N

	 - query n=1 asks only one node

	 - n=2 asks two nodes

	 - n=3 three nodes and so on

	 - >n == mode latency vs. more consistency

	 - optimisation opportunity: balance of probabilities:

	 	 - do we have to fsync write to two nodes, or is it enough to commit to two memories?

- self healing

- read repair

- full replication support

- 99% API compatible

Cluster

GLOSSARY
Node A

Node C

Node B

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
Node A

Node C

Node B

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
➤A cluster consists of nodes

Node A

Node C

Node B

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
➤A cluster consists of nodes
➤A database consists of shards

Node A

Node C

Node B

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
➤A cluster consists of nodes
➤A database consists of shards
➤Consistent hashing

Node A

Node C

Node B

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
➤A cluster consists of nodes
➤A database consists of shards
➤Consistent hashing

➤ Document ID -> hash fun ->
shard ID

Node A

Node C

Node B

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
➤A cluster consists of nodes
➤A database consists of shards
➤Consistent hashing

➤ Document ID -> hash fun ->
shard ID

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 2

DB 1 Shard 3

DB 1

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
➤A cluster consists of nodes
➤A database consists of shards
➤Consistent hashing

➤ Document ID -> hash fun ->
shard ID

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 2

DB 1 Shard 3

DB 1

Document
ABC

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

GLOSSARY

➤Amazon Dynamo
➤A cluster consists of nodes
➤A database consists of shards
➤Consistent hashing

➤ Document ID -> hash fun ->
shard ID

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 2

DB 1 Shard 3

DB 1

Document
ABC

ABC

Physical: Cluster & Nodes

Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes

to scale, first overshard, then move shards to new hardware

	 - has limit

	 - re-sharding in future version

no limit to number of nodes or shards or data stored

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

backup shards

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=1 Client

backup shards

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=1 Client

backup shards

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=1 Client

backup shards

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=1 Client

backup shards

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=2 Client

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=2 Client

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=2 Client

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=2 Client

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

GET abc
n=2 Client

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

PUT abc
n=2 Client

Cluster

Node A

Node C

Node B

DB 1 Shard 1 DB 1 Shard 1*

DB 1 Shard 1**

PUT abc
n=3 Client

INCREMENTAL,PERSISTENT
MAP/REDUCE

- incremental, persistent M/R queries

	 - single left-join possible

- Works in single node as well as cluster

- Mango query lang compiles to M/R

Database

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index

Database Map emit(type, amount)

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

key: concert

value: -30

key: groceries

value: -50

key: groceries

value: -40

key: rent

value: -1000

key: transit

value: -4

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index

Database Map emit(type, amount) Reduce sum(amount)

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

key: concert

value: -30

key: groceries

value: -50

key: groceries

value: -40

key: rent

value: -1000

key: transit

value: -4

key: concert

value: -30

key: groceries

value: -90

key: rent

value: -1000

key: transit

value: -4

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index

Database Map emit(type, amount) Reduce sum(amount)

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

key: concert

value: -30

key: groceries

value: -50

key: groceries

value: -40

key: rent

value: -1000

key: transit

value: -4

key: concert

value: -30

key: groceries

value: -90

key: rent

value: -1000

key: transit

value: -4

Total

-1124

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index

Database Map emit(type, amount) Reduce sum(amount)

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

key: concert

value: -30

key: groceries

value: -50

key: groceries

value: -40

key: rent

value: -1000

key: transit

value: -4

key: concert

value: -30

key: groceries

value: -90

key: rent

value: -1000

key: transit

value: -4

Total

-1124

database.couch

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index

Database Map emit(type, amount) Reduce sum(amount)

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

key: concert

value: -30

key: groceries

value: -50

key: groceries

value: -40

key: rent

value: -1000

key: transit

value: -4

key: concert

value: -30

key: groceries

value: -90

key: rent

value: -1000

key: transit

value: -4

Total

-1124

database.couch type-amount.view

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index

concert: -30 groceries: -50 groceries: -40 rent: -1000 transit: -4

-90 -1004

-120

-1124

concert: -30 groceries: -50 groceries: -40 rent: -1000 transit: -4

-90 -1004

-140

-1144

concert: -20

B+tree, shallow: updates very efficient, only very few nodes need touching

MANGO QUERY LANGUAGE

MANGO QUERY LANGUAGE

➤ Compiles to Map / Reduce
{	
				"selector":	{	
								"year":	{"$gt":	2010}	
				},	
				"fields":	["_id",	"_rev",	"year",	"title"],	
				"sort":	[{"year":	"asc"}],	
				"limit":	2,	
				"skip":	0	
}

RELIABLE DATA STORAGE

Reliable Data Storage

- Append only files for storage and index

- Data committed to disk is never touched again

	 - no partial updates, that cause inconsistencies during catastrophic events

	 - no need for repairs

	 - instant startup

- downside: compaction / garbage collection / vacuum

	 - can run online

	 - in v1: simplest possible, copy live data, swap files

	 	 - takes iops away from live traffic

	 	 - hogs FS block cache

	 - in v2

	 	 - runs in io “background”

	 	 	 - takes longer, but doesn’t take live ops away

	 	 - compaction by shard, still hogs FS block cache, but only per shard

	 	 - more compact, by clustering indexes inside file

By-ID-Idx

By-SEQ-Idx

ID B+Tree

File

[]

[]

F
o
o
t
e
r

By-ID-Idx

By-SEQ-Idx

ID B+Tree

File

[]

[]

F
o
o
t
e
r

F
o
o
t
e
r

PUT B

[B]

[B]

B

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

By-ID-Idx

By-SEQ-Idx

ID B+Tree

File

[]

[]

F
o
o
t
e
r

F
o
o
t
e
r

PUT B

[B]

[B]

B

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

By-ID-Idx

By-SEQ-Idx

ID B+Tree

File

[]

[]

F
o
o
t
e
r

F
o
o
t
e
r

PUT B

[B]

[B]

B

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

F
o
o
t
e
r

PUT A

[A, B]

[B, A]

F
o
o
t
e
r

B

B

B
Y

I
D

B
Y

S
E
Q

A

A

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

By-ID-Idx

By-SEQ-Idx

ID B+Tree

File

[]

[]

F
o
o
t
e
r

F
o
o
t
e
r

PUT B

[B]

[B]

B

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

F
o
o
t
e
r

PUT A

[A, B]

[B, A]

F
o
o
t
e
r

B

B

B
Y

I
D

B
Y

S
E
Q

A

A

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

By-ID-Idx

By-SEQ-Idx

ID B+Tree

File

[]

[]

F
o
o
t
e
r

F
o
o
t
e
r

PUT B

[B]

[B]

B

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

F
o
o
t
e
r

PUT A

[A, B]

[B, A]

F
o
o
t
e
r

B

B

B
Y

I
D

B
Y

S
E
Q

A

A

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

F
o
o
t
e
r

A

PUT C

[A, B, C]

[B, A, C]

F
o
o
t
e
r

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

A

B
Y

I
D

B
Y

S
E
Q

B C

C

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

By-ID-Idx

By-SEQ-Idx

ID B+Tree

File

[]

[]

F
o
o
t
e
r

F
o
o
t
e
r

PUT B

[B]

[B]

B

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

F
o
o
t
e
r

PUT A

[A, B]

[B, A]

F
o
o
t
e
r

B

B

B
Y

I
D

B
Y

S
E
Q

A

A

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

F
o
o
t
e
r

A

PUT C

[A, B, C]

[B, A, C]

F
o
o
t
e
r

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

A

B
Y

I
D

B
Y

S
E
Q

B C

C

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

By-ID-Idx

By-SEQ-Idx

File

PUT B*

[A, B*, C]

[A, C, B*]

F
o
o
t
e
r

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

A

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

BA C

C

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B*

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

*

ID B+Tree

By-ID-Idx

By-SEQ-Idx

File

PUT B*

[A, B*, C]

[A, C, B*]

F
o
o
t
e
r

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

A

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

BA C

C

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B*

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

*

ID B+Tree

COMPACTION V1

F
o
o
t
e
r

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

A

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

C

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B*

A C B*

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B
Y

I
D

B
Y

S
E
Q

Copy

COMPACTION V2

F
o
o
t
e
r

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

A

F
o
o
t
e
r

C

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B*

A C

B
Y

I
D

B
Y

S
E
Q

B*

F
o
o
t
e
r

Smaller, Indexes clustered, background i/o

B
Y

I
D

B
Y

S
E
Q

COMPACTION V2

F
o
o
t
e
r

B

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

A

F
o
o
t
e
r

C

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B
Y

I
D

B
Y

S
E
Q

F
o
o
t
e
r

B*

A C

B
Y

I
D

B
Y

S
E
Q

B*

F
o
o
t
e
r

Smaller, Indexes clustered, background i/o

B
Y

I
D

B
Y

S
E
Q

CASE-STUDIES

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things

CASE STUDIES

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

CASE STUDIES

➤ IBM/Cloudant: Big Data as a Service

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

CASE STUDIES

➤ IBM/Cloudant: Big Data as a Service
➤ eHealth Africa: Fighting Ebola with CouchDB and PouchDB

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

CASE STUDIES

➤ IBM/Cloudant: Big Data as a Service
➤ eHealth Africa: Fighting Ebola with CouchDB and PouchDB
➤ Hospital Run: Hospital management software for regions with

limited infrastructure

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

CASE STUDIES

➤ IBM/Cloudant: Big Data as a Service
➤ eHealth Africa: Fighting Ebola with CouchDB and PouchDB
➤ Hospital Run: Hospital management software for regions with

limited infrastructure
➤ RapidFTR: Family Tracing & Reunification for regions in crisis (e.g.

Haiti) / UNICEF

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

CASE STUDIES

➤ IBM/Cloudant: Big Data as a Service
➤ eHealth Africa: Fighting Ebola with CouchDB and PouchDB
➤ Hospital Run: Hospital management software for regions with

limited infrastructure
➤ RapidFTR: Family Tracing & Reunification for regions in crisis (e.g.

Haiti) / UNICEF
➤ Decisions for Heroes: Coast guard mobile operations center

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

CASE STUDIES

➤ IBM/Cloudant: Big Data as a Service
➤ eHealth Africa: Fighting Ebola with CouchDB and PouchDB
➤ Hospital Run: Hospital management software for regions with

limited infrastructure
➤ RapidFTR: Family Tracing & Reunification for regions in crisis (e.g.

Haiti) / UNICEF
➤ Decisions for Heroes: Coast guard mobile operations center
➤ Avalanche protection inspection in the Swiss Alps

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

CASE STUDIES

➤ IBM/Cloudant: Big Data as a Service
➤ eHealth Africa: Fighting Ebola with CouchDB and PouchDB
➤ Hospital Run: Hospital management software for regions with

limited infrastructure
➤ RapidFTR: Family Tracing & Reunification for regions in crisis (e.g.

Haiti) / UNICEF
➤ Decisions for Heroes: Coast guard mobile operations center
➤ Avalanche protection inspection in the Swiss Alps
➤ Industry of things

Case Studies (maybe splice into use-cases)

IBM/Cloudant: Big Data as a Service

eEhealth Ebola / Hospital Run / RapidFTR (Family Tracing and Reunification UNICEF / Primero)

if-control: avalanche protection inspection

Industry of things: 14% of all industrial facilities (think oil refinery, plant, etc) are networked, and < 20% of those are connected to the public internet.

THANK YOU!
Introducing Apache CouchDB 2.0  

Jan Lehnardt @janl jan@apache.org
Professional Support for Apache CouchDB: https://neighbourhood.ie

mailto:jan@apache.org
https://neighbourhood.ie

