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INTRODUCING APACHE COUCHDB 2.0
by Jan Lehnardt at ApacheCon EU 2016 in Sevilla



JAN LEHNARDT

➤CouchDB since 2006 

➤Apache CouchDB since 
2008 

➤PMC Chair & VP of 
CouchDB since 2011 

➤Longest active contributor 

➤CEO at Neighbourhoodie 
Software in Berlin

Joined CouchDB in 2006, longest standing contributor


Have done everything from evangelising, community work, core engineering.


Still do all of the above


* * *

We shipped 2.0 on Sept. 20th, fulfilling the 10+ year development history of CouchDB
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MIX AND MATCH ANY ONE 
DATA SYNCHRONISATION BETWEEN 

ALL USE-CASES



MOBILE TO CLOUD DATA SYNC



MOST MOBILE DATA IS OFFLINE
for battery power reasons



ALMOST 60% OF MOBILE IS ON 2G
Google Chrome Dev Summit last week



CouchDB helps you to build 
compelling applications in 
the face of spotty networks.



CouchDB helps you to 
bring mobile data into the 

Cloud for Big Data analysis.
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BASICS

➤ HTTP
➤ JSON

➤ Documents
➤ Unique IDs, content 

addressable revisions

JSON cuts ORM
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BASICS

➤ Incremental, Persistent Map / Reduce for queries
➤ Changes, “what happened since?”, think `git log` but a real-

time stream for your database
➤ API Compatible between single node and cluster, apps can grow 

without rewrite
➤ trade-off: no features that wouldn’t scale in single node 

version

MR: unique


API compatible

- design from 10 years ago

- other databases have features that start failing unpredictably at scale

- CouchDB doesn’t have those features in the first place
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DESIGN DECISIONS

➤ Data safety > *
➤ Fault tolerance

➤ Erlang: only one request 
can fail, not the whole 
server

➤ Crash-only design
➤ Everything is resumable
➤ Everything is idempotent
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COUCHDB 2.X

Data Storage Layer

Synchronisation 
Protocol Map/Reduce

HTTP Layer

Cluster Layer

Query Language



POUCHDB

Persistent In-Browser Storage

Synchronisation 
Protocol Map/Reduce

Native JavaScript API

Query Language



MOBILE

Persistent On-Device Storage

Synchronisation 
Protocol

Persistent Map/
Reduce Indexes

Native iOS & Android APIs



TOPOLOGIES



solo


could be single node instance or cluster installation



hot spare


explain replication a bit

one way, resume, delta, conflicts
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Doc 1 [Rev A]

Doc 1 [B, A]

Database

Doc 1 [C, B, A]

Database

Doc 1 [C, B, A]

Doc 1 [D, C, B, A]

Doc 1 [E, D, C, B, A] Doc 1 [E, D, C, B, A]

Doc 1 [F, E, D, C, B, A] Doc 1 [H, E, D, C, B, A]

Doc 1 [[F, H], E, D, C, B, A]

{

		_id:	"1",

		_conflicts:	[F,	H]

}

replication details



SYNCHRONISATION PROTOCOL
Come see my talk tomorrow 12:00: 
“Apache CouchDB Sync Deep Dive” 

Or Thursday 10:30 
if you are still here for ApacheCon EU

We will learn about identity, versioning schemes, revision trees, conflict detection and resolution and the by sequence index
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Till 1 Till 2 Till 3

Store 1

Till 4 Till 5 City 6

Store 2 

Region 1 Region 2

Till 7 Till 8 Till 9

Store 3 

Corporate

Tree



Mesh

c.f. Internet of Things / Industry of Things



CLUSTER INTERNALS

# Cluster

- Amazon Dynamo

- Cluster -> nodes

- Database -> shards

- No Primary Node

	 - any node can answer any request

	 	 - worst case proxies from other nodes

	 	 - adds a hop, possible latency optimisation with “cluster aware” client libraries

- Consistency: R/W = 1,2,3,N

	 - query n=1 asks only one node

	 - n=2 asks two nodes

	 - n=3 three nodes and so on

	 - >n == mode latency vs. more consistency

	 - optimisation opportunity: balance of probabilities:

	 	 - do we have to fsync write to two nodes, or is it enough to commit to two memories?

- self healing

- read repair

- full replication support

- 99% API compatible
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Logical: Databases & Shards

Shard map dynamic: you can put shards on different nodes
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	 - re-sharding in future version
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INCREMENTAL,PERSISTENT 
MAP/REDUCE

- incremental, persistent M/R queries

	 - single left-join possible

- Works in single node as well as cluster

- Mango query lang compiles to M/R




Database

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index



Database Map emit(type, amount)
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amount: -1000
ID: B
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amount: -50

ID: C
type: concert

amount: -30
ID: D
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amount: -40

ID: E
type: transit

amount: -4

key: concert

value: -30

key: groceries

value: -50

key: groceries

value: -40

key: rent

value: -1000

key: transit

value: -4

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index
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value: -30

key: groceries

value: -90

key: rent

value: -1000

key: transit

value: -4

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index
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Total

-1124

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index



Database Map emit(type, amount) Reduce sum(amount)

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
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amount: -40

ID: E
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amount: -4

key: concert
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value: -1000

key: transit

value: -4

key: concert

value: -30

key: groceries

value: -90

key: rent

value: -1000

key: transit

value: -4

Total

-1124

database.couch

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index



Database Map emit(type, amount) Reduce sum(amount)

ID: A
type: rent

amount: -1000
ID: B

type: groceries
amount: -50

ID: C
type: concert

amount: -30
ID: D

type: groceries
amount: -40

ID: E
type: transit

amount: -4

key: concert

value: -30

key: groceries

value: -50

key: groceries

value: -40

key: rent

value: -1000

key: transit

value: -4

key: concert

value: -30

key: groceries

value: -90

key: rent

value: -1000

key: transit

value: -4

Total

-1124

database.couch type-amount.view

Map index is persisted to disk

Reduce is also persisted, and available grouped by key, and total, from the same index



concert: -30 groceries: -50 groceries: -40 rent: -1000 transit: -4

-90 -1004

-120

-1124



concert: -30 groceries: -50 groceries: -40 rent: -1000 transit: -4

-90 -1004

-140

-1144

concert: -20

B+tree, shallow: updates very efficient, only very few nodes need touching
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MANGO QUERY LANGUAGE

➤ Compiles to Map / Reduce 
{	
				"selector":	{	
								"year":	{"$gt":	2010}	
				},	
				"fields":	["_id",	"_rev",	"year",	"title"],	
				"sort":	[{"year":	"asc"}],	
				"limit":	2,	
				"skip":	0	
}



RELIABLE DATA STORAGE

Reliable Data Storage

- Append only files for storage and index

- Data committed to disk is never touched again

	 - no partial updates, that cause inconsistencies during catastrophic events

	 - no need for repairs

	 - instant startup

- downside: compaction / garbage collection / vacuum

	 - can run online

	 - in v1: simplest possible, copy live data, swap files

	 	 - takes iops away from live traffic

	 	 - hogs FS block cache

	 - in v2

	 	 - runs in io “background”

	 	 	 - takes longer, but doesn’t take live ops away

	 	 - compaction by shard, still hogs FS block cache, but only per shard

	 	 - more compact, by clustering indexes inside file
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F
o
o
t
e
r

B

B
Y 

I
D

B
Y 

S
E
Q

F
o
o
t
e
r

A

F
o
o
t
e
r

C

B
Y 

I
D

B
Y 

S
E
Q

F
o
o
t
e
r

B
Y 

I
D

B
Y 

S
E
Q

F
o
o
t
e
r

B*

A C

B
Y 

I
D

B
Y 

S
E
Q

B*

F
o
o
t
e
r

Smaller, Indexes clustered, background i/o

B
Y 

I
D

B
Y 

S
E
Q



COMPACTION V2
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THANK YOU!
Introducing Apache CouchDB 2.0  

Jan Lehnardt @janl jan@apache.org 
Professional Support for Apache CouchDB: https://neighbourhood.ie
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