Introduction And Status Update About COLO FT

Zhang Chen <zhangchen.fnst@cn.fujitsu.com>
Agenda

Background Introduction
Introduction COarse-grain LOck-stepping
COLO Design and Technology Details
Current Status Of COLO
Future Work About COLO
Virtual Machine (VM) replication

A software solution for business continuity and disaster recovery through application-agnostic hardware fault tolerance by replicating the state of primary VM (PVM) to secondary VM (SVM) on different physical nodes.
Existing VM Replication Approaches

Replication Per Instruction: Lock-stepping
- Execute in parallel for deterministic instructions
- Lock and step for un-deterministic instructions

Replication Per Epoch: Continuous Checkpoint
- Secondary VM is synchronized with Primary VM per epoch
- Output is buffered within an epoch

Copyright 2017 FUJITSU LIMITED
Problems

Lock-stepping

Excessive replication overhead

memory access in an MP-guest is un-deterministic

Continuous Checkpoint

Excessive VM checkpoint overhead

Extra network latency
Agenda

Background Introduction
Introduction COarse-grain LOck-stepping
COLO Design and Technology Details
Current Status Of COLO
Future Work About COLO
What Is COLO?

VM and Clients model

VM and Clients are a system of networked request-response system. Clients only care about the response from the VM.

COarse-grain LOck-stepping VMs for Non-stop Service (COLO)

PVM and SVM execute in parallel.

Compare the output packets from PVM and SVM.

Synchronize SVM state with PVM when their responses (network packets) are not identical.

The idea is presented in Xen summit 2012, and 2013, and academia paper in SOCC 2013.
Why COLO Better

Comparing with Continuous VM checkpoint

No buffering-introduced latency
Less checkpoint frequency
On demand vs periodic

Comparing with lock-stepping

Eliminate excessive overhead of un-deterministic instruction execution due to MP-guest memory access
Agenda

Background Introduction
Introduction COarse-grain LOck-stepping
COLO Design and Technology Details
Current Status Of COLO
Future Work About COLO
COarse-grain LOck-stepping Virtual Machine for Non-stop Service
Block Replication (Storage Process)

Write

Pnode
- Send the write request to Snode
- Write the write request to storage

Snode
- Receive PVM write request
- Read original data to SVM cache & write PVM write request to storage (Copy On Write)
- Write SVM write request to SVM cache

Read

Snode
- Read from SVM cache, or storage (SVM cache miss)

Pnode
- Read form storage

Checkpoint
- Drop SVM cache

Failover
- Write SVM cache to storage

Base on qemu’s quorum, nbd, backup-driver, backingfile

Copyright 2017 FUJITSU LIMITED
How Block Replication Work

Non-Shared disk workflow

Primary Write requests

Secondary Write Requests

(1) Copy & Forward

(3) Speculative Write through

(2) backup

Primary Disk

Secondary Disk

Shared dish workflow

Primary Write requests

Secondary Write Requests

Read & Forward

Disk Buffer

Shared Disk

Backing file

Checkpoint: Disk buffer will be emptied to achieve block replication

Failover: Disk buffer will be written back to the ‘parent’ disk
COLO Frame (Memory Sync Process)

- **PNode**
 - Track PVM dirty pages, send them to Snode periodically

- **Snode**
 - Receive the PVM dirty pages, save them to PVM Memory Cache
 - On checkpoint, update SVM memory with PVM Memory Cache
Based on live migration, PVM’s memory/device data be stored in extra memory-buffer of SVM before be synchronized to SVM.

Execution and Checkpoint Flow in COLO

Copyright 2017 FUJITSU LIMITED
Network topology of COLO

Pnode: primary node; PVM: primary VM; Snode: secondary node; SVM: secondary VM

[eth0] : client and vm communication

[eth1] : migration/checkpoint, storage replication and proxy
COLO Proxy Design

Scheme:

- **Kernel scheme**: (obsolete)
 - Based on kernel TCP/IP stack and netfilter component
 - Can support vhost-net, virtio, e1000, rtl8139, etc
 - Better performance but less flexible (Need modify netfilter/iptables and kernel)

- **Userspace scheme**:
 - Totally realized in QEMU
 - Based on QEMU’s netfilter components and SLIRP component
 - Not support vhost-net, but e1000, rtl8139 ,virtio-net
 - More flexible
Proxy Design (Kernel scheme)

Primary Node
- PVM
- vNC
- vhost-net
- Tap
- Internal Network
- Kernel

Secondary Node
- Qemu
- VM Checkpoint
- vNC
- vhost-net
- Tap
- Internal Network
- Kernel

Guest-RX
- **Pnode**
 - Receive a packet from client
 - Copy the packet and send to Snode
 - Send the packet to PVM
- **Snnode**
 - Receive the packet from Pnode
 - Adjust packet’s ack_seq number
 - Send the packet to SVM

Guest-TX
- **Snnode**
 - Receive the packet from SVM
 - Adjust packet’s seq number
 - Send the SVM packet to Pnode
- **Pnode**
 - Receive the packet from PVM
 - Receive the packet from Snode
 - Compare PVM/SVM packet

Same: release the packet to client
Different: trigger checkpoint and release packet to client
Base on kernel TCP/IP and netfileter

Copyright 2017 FUJITSU LIMITED
Proxy Design (Userspace scheme)

Guest-RX

Pnode
- Receive a packet from client
- Copy the packet and send to Snode
- Send the packet to PVM

Snode
- Receive the packet from Pnode
- Adjust packet’s ack_seq number
- Send the packet to SVM

Guest-TX

Snodes
- Receive the packet from SVM
- Adjust packet’s seq number
- Send the packet to Pnode

Pnode
- Receive the packet from PVM
- Receive the packet from Snodes
- Compare PVM/SVM packet
Filter mirror: copy and forward client’s packets to SVM
Filter redirector: redirect net packets
COLO compare: compare PVM’s and SVM’s net packets;
Filter rewriter: adjust tcp packets’ ack and tcp packets’ seq
COLO Performance In KVM

Performance (Based on kernel proxy)

The experimental data is normalized to the native system
Agenda

Background Introduction
Introduction COarse-grain LOck-stepping
COLO Design and Technology Details
Current Status Of COLO
Future Work About COLO
Status of COLO In KVM

COLO Framework:
Include VM state checkpoint process, failover process
Already been merged to master branch
Notify block replication and colo-proxy related patchset V2 has been post.

COLO block replication:
Only include non-shared storage replication scheme
Already been merged to master branch

COLO proxy:
Include netfilter /mirror/redirector/rewriter/ compare plugins
Already been merged to master branch
Status of COLO In Xen

COLO Framework:
Already been merged to master branch

COLO block replication:
Only include the non-shared storage replication scheme
Have been synced with the last qemu branch

COLO proxy:
Abandoned implementation scheme based on kernel proxy
Have been synced with the last qemu branch
Notify COLO Framework qemu side patchset have been post V1
Xen side patchset have been merged
Agenda

Background Introduction
Introduction COarse-grain LOck-stepping
COLO Design and Technology Details
Current Status Of COLO
Future Work About COLO
Future Work

Revise patches according review feedbacks, get patches accepted into upstream
Continuous VM replication development
Support shared storage
Network performance optimizations
Libvirt support
Thank You

shaping tomorrow with you