
Fast	Write	Protection

Xiao	Guangrong
<xiaoguangrong@tencent.com>

Agenda

• Background
• Challenges
• Fast	write	protection
• Dirty bitmap
• Evaluation
• Future	plan

Background

• Live	migration	is	a	key	feature	for	cloud	provider,	e.g.,	Tencent Cloud
• Load	Balance
• Error	recovery
• Maintainability
• Etc.

Background (Cont.)

• Write	protection	is	a	key	performance	dependence for	Live	migration

………Every iteration
of memory migration

Write access from VM

#PF/EPT-violation

……

Guest Memory

Dirty Bitmap

1. Copy and clear

2. Write protect memory

1. VM-Exit

2. Make memory writable

3. Set bit

4. VM-Entry

Challenges

• Current write protection implantation
• It is based on SPTE RMAP (Shadow Page Table Entry Reverse MAPping)

4k Page	1
4k Page	2
4k Page	3

4k Page	N

......

SPTE Pointer

SPTE Pointer

SPTE Pointer

more

…

SPTE Pointer

SPTE Pointer

more

…

struct pte_list_desc

If only 1 SPTE

Or if multiple SPTEs
(rmap = pte_list_desc | 0x1)

2M Page	1
2M Page	2

2M Page	3

2M Page	N

......

*rmap[]

4k pages

2Mpages

Other huge pages
NULL indicates termination

Challenges (Cont.)

• It traverses rmaps of all memslots and makes spte readonly one by
one
• It is not scalable as it depends on the size of memory in VM

• More worse, it needs to hold mmu-lock
• Mmu-lock is a big & hot lock as It is contended by all vCPUs to update shadow
page table

Fast write protection

• Overview Original Fast write protection

Write protect all memory

Write protect all memory

Move write protection by #PF on demand
Write protected entry

Writable	entry

Page

Fast write protection (Cont.)

• The basic idea was raised by Avi Kivity in ~2011 during my vMMU
development
• Extremely fast
• The O(1) algorithm
• Not depend on the capacity of guest memory

• Lockless
• Not require mmu-lock
• Not hurt the parallel of vCPUs

Fast write protection: Implementation

• A new API, KVM_WRITE_PROTECT_ALL_MEM, is introduced
• A global write-protect indicator is introduced

• In order to make it lockless, the indicator is split to two parts

• A write-protect-all generation number is introduced to shadow page table
(struct kvm_mmu_page)
• Which is synced with global generation number and used to check if write protection
is needed

Bit 0Bit 63

Enable write-protect all Generation number

Global write-protect indicator:

Fast write protection: Implementation (Cont.)

Migration	Thread

Ioctl(KVM_WRITE_PROTECT_ALL_MEM)

Global-gen-num++

Kick	off	all	vCPUs	and	ask	them	to
Reload	its	root	page	table

vCPU

Reload	root	page	table:
if	(gen-number	of	shadow	page	!=	global–gen-num)	{
write	protect	all	entries
update	shadow	page’s	gen-num

}

VM-Exit VM-Entry

Fast write protection: Implementation (Cont.)

• For	page	fault	handler

Write protected entry

Writable	entry

Fault on a write protected
entry

Write protect all entries
In lower level page table
based on its gen-num and
global-gen-num

Make the fault entry writable

Repeat until all fault entries are writable

Fast write protection: Implementation (Cont.)

• For the new created shadow page, we can simply set its write-protect
generation number to global generation
• To speed up the process which makes all entries of the shadow page
readonly, we introduce these new stuffs to shadow page table
• possible_writable_spte_bitmap which	indicates	the	writable	sptes
• possiable_writable_sptes which	is	a	counter	indicating	the	number	of	
writable	sptes in	the	shadow	page

Dirty bitmap

• One call of KVM_WRITE_PROTECT_ALL_MEM can write protect all
VM memory, so that KVM_GET_DIRTY_LOG	need	not	do	write	
protection	anymore
• A	new	flag	is	introduced	to	KVM_GET_DIRTY_LOG	to	ask	KVM	
skipping	write	protection
• KVM_DIRTY_LOG_WITHOUT_WRITE_PROTECT

• In	fact,		that	opens	the	opportunities	to	speed	up	
KVM_GET_DIRTY_LOG
• Now,	it	just	copies	the	bitmap	from	kernel	to	userspace

Dirty	bitmap:	omit	KVM_GET_DIRTY_LOG

• Make	the	bitmap	be	shared	between	userspace and	KVM
• Userspace & KVM async-ly and atomic-ly operate the bitmap, i.e., move the
operation in current KVM_GET_DIRTY_LOG to userspace

• Avoiding	xchg is	also	possible	(by	introducing	double	dirty	bitmaps	and	switch	
them	during	fetching	dirty	bits?)

Userspace KVM
Fetch bitmap: mark_page_dirty:
for (i = 0; i < n / sizeof(long); i++) { set_bit_le(gfn_index,	memslot->dirty_bitmap);
mask	=	xchg(&dirty_bitmap[i],	0);
Saved_dirty_bitmap_buffer[i]	=	mask;

}

Evaluation

• When we did the evaluation, shared bitmap has not been
implemented yet
• The following cases are based on the VM which has 3G memory + 12
vCPUs
• Case 1: evaluate the time for KVM_GET_DIRTY_LOG

Before After Result

Time (ns) 64289121 137654 +46603%

Evaluation

• Case 2: evaluate the time to make all memory writable after write-
protection

• Performance drop due to
• a) fast page fault which locklessly fix #PF on last level of shadow page, so before
our work, it is complete lockless, after our work, need mmu-lock to make upper levels
writable

• b) need little time to move write protection from upper levels to lower levels
• We think it is acceptable, particularly, mmu-lock contention (caused by write
protection) did not take into account for this case

Before After Result

Time (ns) 281735017 291150923 -3%

Evaluation (Cont.)

• The following cases are for the VM which has 30G memory and 8 vCPUs, during live
migration, a memory benchmark is running in the VM which repeatedly writes 3000M
memory

• Case 3: for the new booted VM, that means, mmu-lock is required to map physical
memory into shadow page table

• As fast write protection reduces the contention of mmu-lock, VM writes memory more efficiently
than before

• No surprise, as more dirty pages are generated, more time is needed to migrate memory

Before After Result

Dirty page rate
(pages)

333092 497266 +49%

Total time of live
migration

12532 18467 -47%

Evaluation (Cont.)

• Case 4: for the pre-written VM, that means, all memories are mapped
in, fast page fault can directly make the page table writeable without
holding mmu-lock on the last level

• We also noticed that the time of dirty log for the first time, before our work is
156	ms, after our work, only 6 ms is needed

Before After Result

Dirty page rate
(pages)

447435 449284 +0%

Total time of live
migration

31068 28310 +47%

Future plan

• Currently, v2 of fast write protection has been posted out
• https://lkml.org/lkml/2017/6/20/274

• Ask Paolo, Marcelo, Radim and other guys to comment on it and push
it to upstream
• Enable it on QEMU side
• Think	shared dirty bitmap	carefully	and	enable	it
• Others…

Q/A?

Thanks!

