Genetic Algorithms in all their shapes and forms!
Julien Sebrien

• Self-taught, passion for development.
• Java, Cassandra, Spark, JPPF.
• @jsebrien, julien.sebrien@genetic.io

Genetic.io

• Distribution of IT solutions (SaaS, On Premise) allowing the implementation of evolutionary algorithms (genetics, ant colonies, etc.) to optimize business processes.
• Natively distributed architecture.
• Multi-platform (Windows, Unix, Mac), polyglot (Java, Scala, Python, Javascript, R).
Evolutionary computation

Ant colony
Simulated annealing
Differential evolution
Particle swarm optimization
Genetic Algorithms
Memetic Algorithms
And all their variants...
Evolutionary Algorithms

• Inspired by natural physical mechanisms.

• Generate high-quality solutions for optimization and search problems by relying on bio-inspired operators such as mutation, crossover and selection.

Applications

Marketing

Tourism marketing:
https://goo.gl/aCc9Sj

Astronautics

Genetic algorithms 'naturally select' better satellite orbits:
https://goo.gl/eauC32

Genetic Algorithms
Workflow

Selection → Crossover → Mutation → Evaluation

Initial population generation

Over?

Yes → END

No
Selection

Several selection methods exist: Roulette Wheel, Tournament, Ranking, etc.

Roulette Wheel example:

- Parents are selected according to their fitness.
- The fittest individuals have a greater chance of survival than weaker ones.
- Selection probability:
 \[p_i = \frac{f_i}{\sum_{j=1}^{N} f_j} \]
Crossover

Parent 1

Parent 2

Child 1

Child 2

1 crossover point

1 crossover point
Mutation

- Injects diversity into the population, reducing the risk of stagnation within a local optimum.

- Mutation rate generally between 1 and 5%.
Evaluation

• Takes a candidate solution to the problem as input and produces as output how “fit” or how “good” the solution is with respect to the problem in consideration.

• The assigned score is ideally independent of other individuals in the population.

• This function should be carefully implemented in order to increase the probability of convergence of the algorithm.
Termination

The algorithm ends if one of the following termination conditions is satisfied:

• A maximum number of generations is reached.

• A candidate has a fitness score greater than or equal to a previously defined threshold.

• The algorithm has been running for too long.

• Etc.
#ToBeOrNotToBe
« TOBEORNOTTOBE » use case

Modelization:

• Initial genome consisting of a sequence of 13 characters, generated randomly.

Fitness function:

• Sum of the differences between the letter of the genome and the target letter, at each position:

<table>
<thead>
<tr>
<th>Genome</th>
<th>C Q Y T C Z K I H U E I T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>T O B E O R N O T T O B E</td>
</tr>
</tbody>
</table>

Gap (absolute value) 17 2 23 15 12 8 3 6 12 1 10 7 15

Score = 131
Execution

Make something of your big data
« Smart Rockets » use case
« Smart Rockets » use case

Modelization:

A sequence of 300 acceleration vectors in a 2D plane.

Fitness function:

• The closer an individual is to his target at the end of his movement, the higher will be his score.

• An individual's score will be severely penalized if he touches the obstacle during his movement.

➢ Score = 1/ R (with R = remaining distance from target) ; If Obstacle hit, Score = Score / 10!
Execution

Make something of your big data

Genetic.io
Tourist sites location optimization
Selection of tourist sites

Modelization:

• A sequence of bits, representing the presence of an agency on a site: 010100001
Selection of tourist sites

Fitness function:

• Depends on the following variables:
 - The number of tourist sites.
 - The number of competitors in the territory in question.
 - The number of geographical areas within the territory concerned.
 - The number of categories of households.
 - The average expenditure of an individual in category \(k \), for a tourist product or service.
 - The number of \(k \) categories of households located in an area \(i \).
 - Subjective measures of attraction of a site \(j \).
 - The subjective measures of attraction of the services offered on each site.
 - The transport time from an area \(i \) to a site \(j \).
 - Transport time from an area \(i \) to an existing tourist location.
Selection of tourist sites

\[EXP_{ij} = \beta_0 \left(\sum_{k=1}^{N_k} E_k H_{ik} \right) \cdot \frac{W_j e^{-\beta_1 T_{ij}}}{\sum_{m=1; m \neq j}^{N_s+N_c} W_m e^{-\beta_1 T_{im}}} \]

\(i = 1, 2, ..., N_z \)
\(j = 1, 2, ..., N_s \)

\(EXP_{ij} \) is tourism expenditure from zone \(i \) at site \(j \)
\(\beta_0 \) and \(\beta_1 \) are parameters
\(N_k \) is the number of household categories
\(N_z \) is the number of zones
\(E_k \) is mean expenditure on the tourism product/service category by household category \(k \)
\(H_{ik} \) is the number of households in category \(k \) located in zone \(i \)
\(W_j \) is a subjective measure of attraction of site \(j \)
\(W_m \) is a subjective measure of attraction of existing/proposed tourism outlets \((m = 1, 2, ..., N_z)\) and those of competitors \((m = N_s + 1, ..., N_s + N_c)\)
\(T_{ij} \) is the travel time from zone \(i \) at site \(j \)
\(T_{im} \) is the travel time from zone \(i \) to existing/proposed tourism sites \((m = 1, 2, ..., N_z)\) and those of competitors \((m = N_s + 1, ..., N_s + N_c)\)

Objective: maximize \(\sum \sum EXP_{ij} \)
Execution
The Mona Lisa evolution
The Mona Lisa evolution

Method:

• Random generation of polygons

DNA:

• Image pixels (int array)

Fitness:

• Calculation of color differences for each component (R,G,B)

Score = \sum_{i=1}^{nbPixels} \left(\sqrt{\Delta R_i^2 + \Delta G_i^2 + \Delta B_i^2} \right)
Snakes and neural networks
Snakes and neural networks

Vision 240 degrees, divided into 16 parts

Three types of objects encountered:

- Wall
- Food
- Himself!

=> 48 input neurons
Snakes and neural networks

\[s = c_0 + \sum_{i=1}^{N} c_i x_i \]

\[y = \frac{1}{1 + e^{-x}} \]

Inputs ➔ Outputs (angle = output 1 - output 2)
Snakes and neural networks

DNA:

Fitness: 20 * Size + 5 * Health (ie. Dead or Alive!)
Antenna of NASA's ST5 mission
Antenna of NASA's ST5 mission

Objective:

• Optimize the design and efficiency of antennas placed on orbiting satellites

Constraints:

• VSWR < 1,2 (Voltage Standing Wave Ratio) at transmission frequency (8470 Mhz), VSWR < 1,5 at reception frequency (7209,125 Mhz)

• Input Impedance at 50 Ohms

• Mass < 165g, contained in cylinder of diameter / height < 15,24 cm
Antenna of NASA's ST5 mission

Fitness function:

Minimize: $$F = VSWR \cdot \text{gain}_{\text{error}} \cdot \text{gain}_{\text{smoothness}}$$

With:

$$VSWR \quad (\text{Voltage Standing Wave Ratio}) = \frac{1 + |\Gamma|}{1 - |\Gamma|}, \quad \Gamma = \frac{V_r}{V_f} \quad (\text{« reflected wave »}, \text{« forward wave »})$$

$$\text{gain}_{\text{error}} : \text{the sum of the penalties calculated for each angle}$$

$$\text{gain}_{\text{smoothness}} : \text{take into account the smoothing of gains}$$
Antenna of NASA's ST5 mission

Advantages:

• Better consumption, manufacturing time, performance, complexity, reliability

• Improved efficiency by 93%, for 2 QHA (quadrifilar helix antenna)
Ant colony algorithm
Ant colony algorithm

• the ant can only visit each city once

• the more a city is far away, the less likely it is to be chosen ("visibility")

• the greater the intensity of the pheromone trail on the ridge between two cities, the more likely the path will be chosen

• once the path has been completed, the ant deposits more pheromones on all the edges traveled if the path is short

• the pheromone tracks evaporate at each iteration
Ant colony algorithm

Initial Path

New Pheromone
Reinforced Path

Path finally adopted by the colony

Application to the travelers salesman problem!
Simulated annealing
Simulated annealing

• Generating an initial temperature, and a random solution.

• Iterations until a satisfactory solution is obtained, or the temperature falls sufficiently.

• Generating a New Solution from the Modified Current.

• Replacement of the current solution by the new solution according to the measured energies:

\[
\text{newEnergy} < \text{energy} \ ? \ true : \text{Math.exp}((\text{energy} - \text{newEnergy}) / \text{temperature}) > \text{Math.random()}
\]

• Temperature decreases with each iteration \(\text{temp} *= 1 - \text{coolingRate}; \)
 \(\text{coolingRate} = 0.003 \)

Travelers salesman problem!
Sphere

Formula:

\[f(x) = \sum_{i=1}^{n} x_i^2 \]

Minimum:

\[f(x_1, \ldots, x_n) = f(0, \ldots, 0) = 0 \]

\[-\infty \leq x_i \leq \infty, \quad 1 \leq i \leq n \]
Rosenbrock

Formula:

\[f(x) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right] \]

Minimum:

\[
\text{Min} = \begin{cases}
 n = 2 & \rightarrow f(1, 1) = 0, \\
 n = 3 & \rightarrow f(1, 1, 1) = 0, \\
 n > 3 & \rightarrow f(1, \ldots, 1) = 0 \\
\end{cases} \text{ \ n times}
\]

\[-\infty \leq x_i \leq \infty, \quad 1 \leq i \leq n\]
Rastrigin

Formula:

\[f(x) = A n + \sum_{i=1}^{n} [x_i^2 - A \cos(2\pi x_i)] \]

where: \(A = 10 \)

Minimum:

\[f(0, 0) = 0 \]

\(-5.12 \leq x, y \leq 5.12\)
Bibliography

Clever Algorithms (Jason Brownlee):

The nature of code (Daniel Shiffman):

Genetic Algorithms in Search, Optimization, and Machine Learning (David E. Goldberg):

Questions?

Demo ! genetic.io/demo

Twitter ! @geneticio