Accelerating Prototype to Commercial Device with Snapdragon and Ubuntu Core

Oksana Wilcox, Staff Manager
Qualcomm Technologies, Inc.

February 21, 2017
Smartphone innovations are transforming IoT
Mobile technology is the design point for other smart, connected devices
Snapdragon for embedded computing foundation to address broad use cases
Bringing Snapdragon to embedded devices
Identifying the challenges

<table>
<thead>
<tr>
<th></th>
<th>Mobile OEMs</th>
<th>Embedded Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship</td>
<td>o High touch, 1-1</td>
<td>o Low-touch, web-based</td>
</tr>
<tr>
<td>Primary fulfillment</td>
<td>o Direct</td>
<td>o Distribution</td>
</tr>
<tr>
<td>Minimum order</td>
<td>o 10,000s</td>
<td>o 100</td>
</tr>
<tr>
<td>Customers</td>
<td>o High dependency, few</td>
<td>o Low dependency, many</td>
</tr>
<tr>
<td>Roadmap influence</td>
<td>o Strong</td>
<td>o Weak</td>
</tr>
<tr>
<td>Engineering capability</td>
<td>o Strong, large teams</td>
<td>o Varied, small teams</td>
</tr>
<tr>
<td>Primary support</td>
<td>o Direct</td>
<td>o Web-based/Contract work</td>
</tr>
<tr>
<td>End-product volume</td>
<td>o High</td>
<td>o Low</td>
</tr>
<tr>
<td>Design type</td>
<td>o Iterative</td>
<td>o Clean-slate</td>
</tr>
</tbody>
</table>

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc.
Focused, tiered approach designed for longevity

Snapdragon premium tier
Commercial modules available for Snapdragon 820

Snapdragon 600E
1.5 GHz quad-core Qualcomm® Krait™ 300 CPU

Snapdragon 410E
1.2 GHz quad-core ARM v8 Cortex-A53, 32/64-bit capable

Supported for longevity
- Snapdragon 600E and 410E are available through distribution for a minimum of 10 years from commercial sample of mobile processor in 2015

Available for chip on board design
- 1st time Snapdragon processors are sold through 3rd party distribution via Arrow Electronics
Designed for performance in embedded devices
Snapdragon processors designed specifically for embedded applications

Snapdragon 410E

- **CPU:** 1.2 GHz quad-core ARM v8 Cortex-A53, 32/64-bit capable
- **Connectivity:** Integrated Wi-Fi, Bluetooth 4.xLE, and GPS
- **DSP:** Qualcomm® Hexagon™ DSP up to 500MHz
- **Graphics:** Qualcomm® Adreno™ 306 400MHz GPU with support for OpenGL ES 3.0/2.0/1.1, OpenCL 1.1e*, DirectX 9.3*
- **Interfaces:** 2x USB2.0, MIPI-CSI, MIPI-DSI, SD3.0 & eMMC v4.5 with DDR support
- **OS:** Android, Linux, Windows 10

Snapdragon 600E

- **CPU:** Quad-core Qualcomm® Krait™ 300 CPU up to 1.5 GHz
- **Connectivity:** Wi-Fi, Bluetooth 4.0LE/3.x, and GPS
- **DSP:** Qualcomm® Hexagon™ DSP up to 500MHz
- **Graphics:** Qualcomm® Adreno™ 320 400+ MHz GPU with support for OpenGL ES 3.0/2.0/1.1, OpenCL 1.1e*
- **Interfaces:** SATA, PCIe 2.0, HDMI, LVDS, HSIC, 3x USB2.0, 3x MIPI-CSI, 2x MIPI-DSI, SD3.0 & eMMC v4.5 with DDR support
- **OS:** Android, Linux

*OS dependent

Qualcomm Hexagon, Qualcomm Krait and Qualcomm Adreno are products of Qualcomm Technologies, Inc.
Building the Snapdragon embedded business

Key customer requirements

- Community Board
- Software Ecosystem
- Extensive Documentation
- Longevity
- Snapdragon Technology Providers
- Distribution
- Component Ecosystem
- Commercialization Support
Clear path from prototype to commercialization

Ready to support consumer, commercial and industrial device needs

Develop & Prototype

- Use DragonBoard™ 410c for evaluation and prototype development
 - Arrow Electronics

Design & Manufacture

- Flexibility to use off-the-shelf, commercial ready or custom SOMs and SBCs or discrete parts for chip on board design
 - Arrow Electronics
 - eInfochips
 - Inforce Computing
 - Intrinsyc Technologies
 - Variscite
 - and others

DragonBoard 410c is a product of Arrow Electronics
Software ecosystem
Supporting great flexibility for architecting IoT solutions

OS
- Android
- Linux
 - Debian
 - OpenEmbedded
 - Ubuntu Core
- Windows 10 IoT Core

Middleware
- AllJoyn®
- IBM Watson IoT
- ROS (Robotics Operating System)

Cloud
- AT&T M2X
- AWS IoT
- IBM Bluemix
- Microsoft Azure IoT
Community Board

Builds SW strengths and cultivates the customers of tomorrow

Benefits of community board

• Builds SW ecosystem
 - Enables community SW development
 - Middleware/Cloud service enablement platform

• Influences design in at prototype stage
 - Makers/ maker pros of today are startups of tomorrow
 - Embedded customers need evaluation platform

DragonBoard™ 410c - built with path to commercialization

• 96Boards open HW specification
 - Compatibility with 96Boards mezzanine products to enable easy prototyping

• Enabling mainline Linux support

• Commercial solution providers in place for industrial products/solutions
From Prototype to Commercial Device with Snapdragon and Ubuntu Core

Kyle Fazzari
Software Engineer
kyle@canonical.com
Irc: kyrofa

Lowry Snow
Global Business Development
lowry.snow@canonical.com
With Dragonboard 410c and Ubuntu Core, Qualcomm and Canonical are accelerating TTM for embedded computing:

- Prebuilt kernel that enables all hardware components on the device
- OS security and maintenance updates for the life of the Ubuntu LTS (five years through 2021)
Consultancy

Hardware & Device Enablement
Security & Maintenance Updates
Custom image and support

Products

Device Certification
Update Control
Brand Stores
Building your IoT Device

● Platform overview:
 ○ Ubuntu Core architecture
 ○ Roadmap

● From prototype to production:
 ○ An example: Nextcloud box
 ○ Components of an Ubuntu Core image
 ○ How to make your own customized flashable image

● Getting help
Platform Overview
What is Ubuntu Core?

- Modular and simple architecture and packages: snaps!
- Updated transactionally, worry free updates and rollback
- Automatically confines applications for additional security
- Provides an amazing developer experience with snapcraft
- With a store to easily update devices and add/remove apps
- Trusted cadence and Long Term Support releases
Simple packages: snaps

Package any app for a number of different Linux distributions (desktop, server, cloud or device), and deliver updates directly.

Ubuntu Debian Arch Linux Gentoo Linux Fedora ...
Modular and simple architecture

Classic

Legend:
- Application A
- Application B
- OS package
- Shared library
- Device driver

Ubuntu Core

Confined applications packaged as a snap with dependencies

Minimal OS packaged as a snap

Clearly defined Kernel and device packaged as a snap
Transactional updates: Apps, OS and kernel

Original snap
Original data
Writable area

Modified data during upgrade
Writable area

Updated snap

Upgrade

Original data is kept on device

Original snap
Original data
Writable area

Rollback on failure

Original snap
Original data
Writable area
Automatically *confines* applications

Apps are confined and isolated
Amazing developer experience: **snapcraft**

https://snapcraft.io

- **Snapcraft** creates snaps, orchestrating disparate components and build systems into one cohesive distributable package.
- It can re-use deb packages from Ubuntu.
- It’s extensible and new plugins to leverage different technologies are being developed all the time. A few examples of its plugins are **Java**, **Python**, **Catkin (ROS)**, **Go**, **CMake**, **qmake**, **make**, etc.
A store to manage your devices and updates

- Steps to deploy an update to all fielded devices:
 1. Push an updated snap to the store.
Opportunities for new software revenue
Trusted by Linux developers

- Ubuntu 14.04 LTS (Kernel 3.13)
 - 14.10 (3.16)
 - 15.04 (3.19)
 - 15.10 (4.2)

- Ubuntu 16.04 LTS (Kernel 4.4)
 - 16.10

- Ubuntu Core 16 (Kernel 4.4)
 - 16.10

- Ubuntu 18.04
 - 17.04
 - 17.10

- Ubuntu Core 18
 - 17.10

- Ubuntu 18.04 LTS
 - 18.10

- Ubuntu Core 18
 - 18.04

- Ubuntu 18.04 LTS
 - 19.04

- Ubuntu Core 18
 - 19.04

Legend:
- Long Term Support
- Developer Release
Prototype to production
An example: Nextcloud box
From prototype to commercial device
The **gadget** snap: make it boot

- Bootloader
- Filesystem layout specification
- Default configuration
- **Using a DragonBoard? This is already provided and maintained for you**
 - (you can still make your own if you want)
The kernel snap: make it Linux

- 4.4-based kernel
- Device drivers
- Using a DragonBoard? This is already provided and maintained for you
 - (you can still make your own if you want)
The **core** snap: make it Ubuntu

- Execution environment for app snaps
- Init system
- Basic services (networking, etc.)
- Basic files and libraries (libc, etc.)
- **Using a DragonBoard? This is already provided and maintained for you**
 - (you can still make your own if you want)
The application snaps: make it awesome

Use Snapcraft to assemble your snap from existing projects, leveraging different technologies.
Put it together: build a flashable image

You’ll need:
- Gadget snap
- Kernel snap
- Core snap
- Whatever you want to add on top (in our example, Nextcloud)
- Store account
- ubuntu-image
Create your store account

Ubuntu Core will verify the image it’s booting actually came from you. In order for that to happen, you need to create a signing key and register it with the store.

2. Record your account ID. You’ll need it in a minute.
Install ubuntu-image (and related tools)

$ sudo apt install ubuntu-image snapcraft snapd

- snapcraft/snapd: needed to generate, register, and use a signing key
- ubuntu-image: actually generate a flashable image
Create your key

In order to build an image, you need to be able to “assert” that this is your image with a key, then snapd has something to verify when it boots.

1. Generate a key that will be linked to your Ubuntu Store account:

 $ snapcraft create-key my-key-name

2. Check that everything went OK and you have your key ready:

 $ snapcraft list-keys

 Name SHA3-384 fingerprint
 - my-key-name Qjdfpj0EWAW<snip>kkiZ41H4CROy (not registered)

3. Register your new key with the store:

 $ snapcraft register-key
 Registering key ...
 Done. The key “my-key-name” (Qjdfp<snip>H4CROy) may be used to sign your assertions.
Create your model definition

dragon-model.json:
{
 "type": "model",
 "series": "16",
 "model": "nextcloud-dragon",
 "architecture": "arm64",
 "gadget": "dragonboard",
 "kernel": "dragonboard-kernel",
 "authority-id": "<account id>",
 "brand-id": "<account id>",
 "timestamp": "<timestamp>",
 "required-snaps": ["nextcloud"]
}

- What is your model’s name? (nextcloud-dragon)
- Which Ubuntu Core series are you targeting? (16)
- What architecture is this image for? (arm64)
- Which gadget snap is being used? (dragonboard)
- Which kernel snap is being used? (dragonboard-linux)
- Who is defining this model? (your store account ID)
- When was this model defined?
 ○ $ date -Iseconds --utc
- What extra snaps are contained within this image? (nextcloud)
Create your model assertion

Now it’s time to use our key to sign this model definition (thereby turning it into an assertion).

```
$ cat dragon-model.json | snap sign -k my-key-name > dragon.model
```
You need a passphrase to unlock the secret key for user: "my-key-name"
4096-bit RSA key, ID 0B79B865, created 2016-01-01
...

After giving your passphrase, a dragon.model file is created containing the assertion.
Build and flash your image!

Once we have a signed model assertion, build the image using ubuntu-image, requesting that the **stable** channel be used when fetching the image’s various snaps:

```
$ sudo ubuntu-image -c stable -o dragon.img dragon.model
```

After a few minutes, you’ll end up with `dragon.img`, which is a bootable Ubuntu Core image containing the components specified in your model definition (in our example, this includes Nextcloud). Flash it to an SD card, put it in a DragonBoard, and boot!

```
$ sudo dd if=dragon.img of=/dev/sdXX bs=32M; sync;
```
Let's recap: 1, 2, 3!

1. Pick the board
 - Qualcomm DragonBoard

2. Develop & upload Snaps

3. Design a cool box
Getting help and getting involved

● **snapcraft.io**
 ○ Snapcraft documentation and walkthroughs

● **tutorials.ubuntu.com**
 ○ Various Snapcraft and Ubuntu Core tutorials in a codelabs format

● **Ask a question on Ask Ubuntu (askubuntu.com)**
 ○ If you’re stuck on a problem, someone else has probably encountered it too and they can help you. Take a look at the “snap” or “ubuntu-core” tags.

● **Join our real time chat**
 ○ IRC: #snappy on freenode.net
 ○ Rocket: https://rocket.ubuntu.com/channel/snapcraft