
Author: Ron Birkett, Sitara™ ARM® Processors

Enhancing Real-time Capabilities with the PRU

Love Linux. Need hard real-time? Seems like these might not go together, but
with the PRU (Programmable Real-time Unit) and a Cortex-A running Linux, you
might be surprised.

October 2014

2

3

Discussion Topics

• What is Real-Time?

• PRU Hardware Overview

• Linux  PRU

• Summary

4

What is “Real-time”?

• “Real-time” is relative

• Real-time programs must guarantee response within strict time
constraints (i.e. “deadlines”)

• Real-time deadlines must be met, regardless of system load

• High Performance ≠ Real-time

• For our definition, we’ll constrain “real-time” to deterministic, ultra-low-
latency response

5

PRU Hardware
Overview

6

ARM SoC Architecture

L1 D/I caches:
– Single cycle access

L2 cache:
– Min latency of 8 cycles

Access to on-chip SRAM:
– 20 cycles

Access to shared memory
over L3 Interconnect:
– 40 cycles

Shared
Memory
Shared
Memory Peripherals

Peripherals GP I/O

L4 Interconnect

ARM Subsystem

Cortex-A

L1
Instruction

Cache

L1
Instruction

Cache

L1
Data

Cache

L1
Data

Cache

L2 Data CacheL2 Data Cache

L3 Interconnect

7

ARM + PRU SoC Architecture
Programmable Real-Time Unit (PRU)
Subsystem

Interconnect

INTCINTC Peripherals

PRU0
I/O

Inst.
RAM
Inst.
RAM

Shared
RAM

Shared
RAM

Data
RAM
Data
RAM

Inst.
RAM
Inst.
RAM

Data
RAM
Data
RAM

PRU1
I/O

Shared
Memory
Shared
Memory Peripherals

Peripherals GP I/O

L4 Interconnect

ARM Subsystem

Cortex-A

L1
Instruction

Cache

L1
Instruction

Cache

L1
Data

Cache

L1
Data

Cache

L2 Data CacheL2 Data Cache

PRU0
(200MHz)

PRU1
(200MHz)

L3 InterconnectL3 Interconnect

8

Programmable Real-Time Unit (PRU) Subsystem

• Programmable Real-Time Unit
(PRU) is a low-latency
microcontroller subsystem

• Two independent PRU
execution units

– 32-Bit RISC architecture
– 32 General Purpose Registers
– 200MHz – 5ns per instruction
– Single cycle execution - No

pipeline
– Dedicated instruction and data

RAM per core
– Shared RAM

• Includes Interrupt Controller for
system event handling

• Fast I/O interface
– Up to 30 inputs and 32 outputs

on external pins per PRU unit

Master I/F
(to SoC interconnect)

Slave I/F
(from SoC interconnect)

PRU Subsystem Block Diagram

32 GPO

30 GPI

Events to
ARM INTC

Events from
Peripherals

+ PRUs

32 GPO

30 GPI

Scratchpad

Interrupt
Controller

(INTC)

PRU1
Core

(IRAM1)

PRU1
Core

(IRAM1)

PRU0
Core

(IRAM0)

PRU0
Core

(IRAM0)

Data RAM0Data RAM0

Data RAM1Data RAM1

Shared
RAM

Shared
RAM

MII1 RX/TX

MII0 RX/TX

32
-b

it
In

te
rc

on
ne

ct
 b

us

IEP (Timer)

eCAP

MPY/MAC

UART

Industrial
Ethernet

Industrial
Ethernet

MDIO

9

Fast I/O Interface

Peripherals

GPIO1
GPIO2
GPIO3

....

Cortex A8

L3F L3S

GPIO 3.19

L4 PER

Pinmux

Device pin

10

Fast I/O Interface

• Reduced latency through direct access to pins
– Read or toggle I/O within a single PRU cycle
– Detect and react to I/O event within two PRU cycles

• Independent general purpose inputs (GPIs)
and general purpose outputs (GPOs)
– PRU R31 directly reads from up to 30 GPI pins
– PRU R30 directly writes up to 32 PRU GPOs

• Configurable I/O modes per PRU core
– GP input modes

• Direct connect
• 16-bit parallel capture
• 28-bit shift

– GP output modes
• Direct connect
• Shift out

Peripherals

GPIO1
GPIO2
GPIO3

....

PRU
Subsystem

Cortex A8

L3F L3S

GPIO 3.19 PRU
output 5

L4 PER

Pinmux

Device pin

11

GPIO Toggle: Bench measurements
PRU IO Toggle:ARM GPIO Toggle

~200ns ~5ns = ~40x Faster

12

Integrated Peripherals

• Provide reduced PRU read/write access latency compared to external
peripherals

• Local peripherals don’t need to go through external L3 or L4 interconnects

• Can be used by PRU or by the ARM as additional hardware peripherals on the
device

• Integrated peripherals:
– PRU UART
– PRU eCAP
– PRU MDIO
– PRU MII_RT
– PRU IEP

Real-time Ethernet
specific modules

Programmable Real-Time Unit (PRU)
Subsystem

Interconnect

INTC UART

Inst.
RAM
Inst.
RAM

Shared
RAM

Shared
RAM

Data
RAM
Data
RAM

Inst.
RAM
Inst.
RAM

Data
RAM
Data
RAM

PRU0
(200MHz)

PRU1
(200MHz)

eCAP MII x2 MDIO IEP
(Timer)

13

PRU “Interrupts”

• The PRU does not support asynchronous interrupts.
– However, specialized h/w and instructions facilitate efficient polling of

system events.
– The PRU-ICSS can also generate interrupts for the ARM, other PRU-ICSS,

and sync events for EDMA.

• From UofT CSC469 lecture notes, “Polling is like picking up your phone
every few seconds to see if you have a call. Interrupts are like waiting
for the phone to ring.
– Interrupts win if processor has other work to do and event response time is

not critical
– Polling can be better if processor has to respond to an event ASAP”

• Asynchronous interrupts can introduce jitter in execution time and
generally reduce determinism. The PRU is optimized for highly
deterministic operation.

14

PRU Summary and Update

• Cortex-A arch designed more for performance than real-time

• PRU designed for low-latency and deterministic, making real-time
easier to deal with

• Using both for their designed purposes is an elegant system design

• Available on AM335x and AM437x, and planned for future devices

• New C Compiler and Register Header files for the PRU make firmware
development easier than ever

• Upstream work in Linux frameworks to add PRU support makes
interfacing with Linux easier as well

15

Linux Drivers
to Interface with
PRU

16

ARM + PRU SoC Software Architecture
Programmable Real-Time Unit (PRU)
Subsystem

Interconnect

INTCINTC Peripherals

PRU0
I/O

Inst.
RAM
Inst.
RAM

Shared
RAM

Shared
RAM

Data
RAM
Data
RAM

Inst.
RAM
Inst.
RAM

Data
RAM
Data
RAM

PRU1
I/O

Shared
Memory
Shared
Memory Peripherals

Peripherals GP I/O

L4 Interconnect

ARM Subsystem

Cortex-A

L1
Instruction

Cache

L1
Instruction

Cache

L1
Data

Cache

L1
Data

Cache

L2 Data CacheL2 Data Cache

PRU0
(200MHz)

PRU1
(200MHz)

L3 InterconnectL3 Interconnect

ARM Subsystem Programmable Real-Time Unit (PRU)
Subsystem

17

What do we need Linux to do?

• Load the Firmware

• Manage resources (memory, CPU, etc.)

• Control execution (start, stop, etc.)

• Send/receive messages to share data

• Synchronize through events (interrupts)

• These services are provided through a combination of
remoteproc/rpmsg + virtio transport frameworks

18

PRU remoteproc Stack

pruss-remoteproc

remoteproc

PRU FW

DTB File
passed from U-

Boot

Kernel

PRU

Client drivers
specifically for
PRU core

remoteproc
framework

• The remoteproc framework allows
different platforms/architectures to
control (power on, load firmware,
power off) remote processors while
abstracting any hardware
differences

– Does not matter what OS (if any) the
remote processor is running

• Kernel documentation available in
/Documentation/remoteproc.txt

Resource
Table

19

Creating a New Node in DT

• A pruss node is created in the root am33xx Device Tree file

• This passes information about the subsystem on AM335x into the PRU
rproc driver during probe() function
– Primarily register offsets, clock speed, and other non-changing information

• Requires little-to-no interaction on a case-by-case basis
– All project-dependent settings are configured in Resource Table

20

Understanding the Resource Table

• What is a Resource Table?
– A scalable TLV (table, length, value) Table used to inform the remoteproc

driver about the remote processor’s available resources
– Typically refers to memory, local peripheral registers, etc.
– Firmware-dependent

• Why do I need one?
– Allows the driver to remain generic while still supporting a number of

different, often unique remote processors
• Is flexible enough to allow for the creation of a custom resource type

– Is not strictly required as the driver can fall back on defaults
• This severely limits it as the driver may not understand how the PRU firmware

wishes to map/handle interrupts
• Necessary for ARM/PRU communication

21

Why Use Remoteproc?

• It already exists
– Easier to reuse an existing framework than to create a new one

• Easy to implement
– Requires only a few custom low-level handlers in the Linux driver for a new

platform

• Mainline-friendly
– The core driver has been in mainline for a couple years

• Fairly simple interface for powering up and controlling a remote
processor from the kernel

• Enables us to use rpmsg framework for message sharing

22

How to Use Remoteproc

• Load driver manually or build into kernel
– Use menuconfig to build into kernel or create a module

• Probe() function automatically looks for firmware in /lib/firmware
directory in target filesystem
– rproc_pru0_fw or rproc_pru1_fw for core 0 and 1, respectively

• Interrupts passed between host application and PRU firmware
– Application effectively registers to an interrupt

23

PRU rpmsg Stack

pruss-remoteproc

remoteproc

pru-rpmsg

rpmsg

virtio

PRU Data Memoryvring

Application

PRU FW

PRU rpmsg lib

DTB File
passed from U-

Boot

User Space

Kernel

PRU

Application uses /dev/rpmsg-prux interface to send
messages

Client drivers specifically for PRU core

Linux frameworks

Resource
Table

24

What Is Rpmsg?
• Rpmsg is a Linux framework designed

to allow for message passing between
the kernel and a remote processor

• Kernel documentation available in
/Documentation/rpmsg.txt

• Virtio is a virtualized I/O framework
– We will use it to communicate with our

virtio device (vdev)
• There are several ‘standard’ vdevs, but

we only use virtio_ring
• Virtio_ring (vring) is the transport

implementation for virtio
– The host and PRU will communicate

with one another via the virtio_rings
(vrings) and “kicks” for synchronization

PRU

pru-rpmsg

rpmsg

virtio

vring

Application
User Space

Kernel

PRU
Data
Memory

25

Why Use Rpmsg?
• It already exists

– Easier to reuse an existing framework than to create a new one

• Mainline-friendly
– The core driver has been in mainline for at least a couple years

• Ties in with existing remoteproc driver framework

• Fairly simple interface for passing messages between User Space and
the PRU firmware

• Allows developers to expose the virtual device (PRU) to User Space or
other frameworks

• Provides scalability for integrating individual PRU peripherals with the
respective driver sub-systems.

26

How to Use pru-rpmsg Generic Client
Driver
• User Space applications use

/dev/rpmsg-prux interface to
pass messages to and from
PRU

PRU

pru-rpmsg

rpmsg

virtio

vring

/dev/rpmsg-pru0
User Space

Kernel

PRU
Data
Memory

27

Custom rpmsg Client Drivers

• User Space applications use
/dev/rpmsg-pru0 interface to
pass messages to and from
PRU

• Create different rpmsg client
drivers to expose the PRU as
other interfaces
– Firmware based UART, SPI,

etc.
– Allows true PRU firmware

enhanced Linux devices

PRU

pru-rpmsg

rpmsg

virtio

vring

/dev/rpmsg-pru0
User Space

Kernel

PRU
Data
Memory

pru-tty

/dev/tty06

28

What’s happening now?

• Ongoing work to improve remoteproc/rpmsg for the PRU
– Move from using hardware mailboxes for kick to PRU events
– Allow vring buffers to be specified in PRU Data Memory as opposed to

DDR
– Allow smaller buffers to be used for vrings
– Creation of generic pru-rpmsg client driver to expose PRU to User Space
– Provide example firmware

• Broadcast dynamic name service announcement
message to connect to appropriate client driver

• Send/Receive data via vrings
• Use PRU events to manage kicks

• The PRU BeagleBone Cape
– Easy way to experiment with PRU
– Labs available with release
– Available Nov. 4, 2014

Programmable Real-time Unit (PRU) Cape
Inexpensive and easy PRU evaluation

Expansion connectors
Connectivity to
BeagleBone Black

LCD connector
• For optional character

display (not included)
• Compatible with

Newhaven NHD-
0208AZ-RN-YBW-33V

UART
Hardware UART
in PRU subsystem

Audio output
Sine wave tone example
using the PRU shift-out hardware

Proto board area
For prototyping
your own design

Temperature sensor
Sensor monitoring example
using 1-wire interface

LEDs and push buttons
For PRU GPIO testing

Features & Benefits
• BeagleBone Black compatible plug-in

board (“cape”)
• Quick development and evaluation of the

PRU integrated in Sitara processors
• Leverages sample code included in the TI

Linux Software Development Kit
• The PRU core is optimized for

deterministic, real-time processing, direct
access to I/Os and ultra-low-latency
requirements

Schedule
• TI Design available now:

http://www.ti.com/tool/TIDEP0017
• Available for $39 from TI Store and

Distributors in Nov 2014

29

30

Thank you

31

Backup Slides

32

Features & Benefits
Feature Benefit

Each PRU has dedicated instruction and
data memory and can operate
independently or in coordination with the
ARM or the other PRU core

Use each PRU for a different task; use
PRUs in tandem for more advanced
tasks

Access all SoC resources (peripherals,
memory, etc.)

Direct access to buffer data; leverage
system peripherals for various
implementations

Interrupt controller for monitoring and
generating system events

Communication with higher level
software running on ARM; detection of
peripheral events

Dedicated, fast input and output pins Input/output interface implementation;
detect and react to I/O event within two
PRU cycles

Small, deterministic instruction set with
multiple bit-manipulation instructions

Easy to use; fast learning curve

33

R0

R29
R30

R1

CONST
TABLE
CONST
TABLE

Instruction
RAM

Instruction
RAM

32 GPO

30 GPI

…

PRU Execution unit

General Purpose Registers
 All instructions are performed on registers

and complete in a single cycle
 Register file appears as linear block for all

register to memory operations

General Purpose Registers
 All instructions are performed on registers

and complete in a single cycle
 Register file appears as linear block for all

register to memory operations

Special Registers (R30 and R31)
 R30

 Write: 32 GPO
 R31

 Read: 30 GPI + 2 Host Int status
 Write: Generate INTC Event

Special Registers (R30 and R31)
 R30

 Write: 32 GPO
 R31

 Read: 30 GPI + 2 Host Int status
 Write: Generate INTC Event

Instruction RAM
 Typical size is a multiple of 4KB (or

1K Instructions)
 Can be updated with PRU reset

Instruction RAM
 Typical size is a multiple of 4KB (or

1K Instructions)
 Can be updated with PRU reset

Constant Table
 Ease SW development by

providing freq used constants
 Peripheral base addresses
 Few entries programmable

Constant Table
 Ease SW development by

providing freq used constants
 Peripheral base addresses
 Few entries programmable

Execution Unit
 Logical, arithmetic, and flow

control instructions
 Scalar, no Pipeline, Little Endian
 Register-to-register data flow
 Addressing modes: Ld

Immediate & Ld/St to Mem

Execution Unit
 Logical, arithmetic, and flow

control instructions
 Scalar, no Pipeline, Little Endian
 Register-to-register data flow
 Addressing modes: Ld

Immediate & Ld/St to Mem
INTC

PRU Functional Block Diagram

EXECUTION
UNIT

EXECUTION
UNIT

R2

R31

34

Use Cases Examples

Development Complexity

Not all use cases are
feasible on PRU
- Development complexity
- Technical constraints

(i.e. running Linux on PRU)

• Industrial
Protocols

• ASRC
• 10/100 Switch

• Smart Card
• DSP-like functions

• Filtering
• FSK Modulation

• LCD I/F
• Camera I/F

• RS-485
• UART

• SPI
• Monitor Sensors

• I2C
• Bit banging

• Custom/Complex PWM
• Stepper motor control

35

C Compiler

• Developed and maintained by TI CGT team
– Remains very similar to other TI compilers

• Full support of C/C++
• Adds PRU-specific functionality

– Can take advantage of PRU architectural features automatically
– Contains several intrinsics

• List can be found in Compiler documentation

• Full instruction-set Assembler for hand-tuned routines

36

TI PRU CGT Assembler vs PASM
• Advantages of using TI PRU Assembler over PASM

• The biggest advantage is that the TI PRU linker produces ELF files that enable source-
level debugging within CCS. No more debugging in disassembly window!!

• The TI PRU assembler uses the same shell as other TI compilers. Customers only need
to learn one set of conventions, directives, etc.

• TI PRU assembler will be maintained in the future, while PASM will not be updated
anymore.

• The TI PRU assembler uses the powerful TI linker which allows more flexibility then PASM
and facilitates linking PRU programs with host CPU image for runtime loading and
symbol sharing.

• Disadvantages of using TI PRU Assembler over PASM
• Have to learn new directives if already used to PASM
• TI PRU assembler requires more command line options and a linker command file.
• Some porting effort required for reusing legacy PASM projects.

There are some differences in the instructions and directives supported TI
PRU Assembler versus PASM. Theses are listed in the TI PRU Compiler
package release notes which is located at the root of the install folder.

37

TI PRU CGT Assembly vs C

• Advantages of coding in Assembly over C
– Code can be tweaked to save every last cycle and byte of RAM
– No need to rely on the compiler to make code deterministic
– Easily make use of scratchpad

• Advantages of coding in C over Assembly
– More code reusability
– Can directly leverage kernel headers for interaction with kernel drivers
– Optimizer is extremely intelligent at optimizing routines

• “Accelerating” math via MAC unit, implementing LOOP instruction, etc.
– Not mutually exclusive - inline Assembly can be easily added to a C project

38

Custom Function Drivers

• Some users may wish to use the PRU as another Linux Device (e.g. as
another UART /dev/ttyO6)
– This will require a custom Linux driver to work in tandem with rproc/rpmsg
– Customer at this time will have to develop this custom driver themselves or

work with a third party to do so

• TI is not initially launching any support for this mechanism
– We have several different targets in mind (UART, I2C, I2S, SPI, etc…), but

these will not be available at release
– No target date available today, but we will start evaluating after broad

market PRU launch

39

Configuring the Resource Table

• Most projects will not need to touch anything beyond the interrupt and
vring configuration

• Typically only need to modify up to three things
– Event-to-channel mapping
– Channel-to-host mapping
– Number and location of vrings

