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About Me – Bob Paulin
• @bobpaulin/bob@bobpaulin.com/http://bobpaulin.com
●Independent Consultant

• Web Centric Platforms
• Business Enablement
• Continuous Delivery

Chicago Java Users Group (CJUG) Community Leader
• Need a Mentor? mentors@cjug.org
• Want to Present in Chicago? present@cjug.org

Proud Father/Husband with 3 kids (and a Cat since Developers all seemed 
to like cats)
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Regret



Application Development Cycle



Hope?



If we could start over what 
would we want?



Modularity



Options?



OSGi
● Mature 10+ Years
● Tools
● Modularity is enforced
● Versioning
● Complex Classloading
● Runtime
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Inversion of Control (IoC)
● Lightweight
● Easily added to existing systems
● Tools
● Modularity not enforced (DIY)
● No Versioning
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Jigsaw
● Java 7....8...9??
● Versioning
● Interoperability with OSGi (Penrose)
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OSGi: Start with One 
big Bundle?



OSGi: When does 
embedding make sense?



Want an Isolated 
Third-Party 
Container



Working with 
OSGi unfriendly 
Libraries.



Licensing/Proprietary 
Code



No 
Budget/Time/Desire 
for full OSGi



Embedded Design/Implementation



Exposing packages to the 
framework via System Packages



Minimum required bundles

● Felix Framework● Felix Framework



A few more to consider...

● Felix Config Admin
● Gogo Shell
● Web Console + HTTP
● SCR + Annotations
● Apache ACE Management Agent
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● Configuration
● Factories
● Resources
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Good places to start



● Framework creates threads
● Use only one Framework Instance
● Requires some IDE tricks
● Package Tangling may get worse before it 

gets better (Use Sonar)
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Caveats



Talk is Cheap.

Time for an example.



● SOAR 2D Grid Game
● Written in C++ with Java Bindings
● Code is Coupled
● SWT
● Multiple Games
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● Code is Coupled
● SWT
● Multiple Games

An Embedded Usecase With 
Tanks
 



Embedded Design/Implementation



Exposing packages to the 
framework via System Packages

configMap.put(Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA,
    "edu.umich.soar,edu.umich.soar.gridmap2d.config," +
    "edu.umich.soar.gridmap2d,edu.umich.soar.gridmap2d.world," +
    "edu.umich.soar.gridmap2d.visuals," +
    "org.eclipse.swt.widgets,org.eclipse.swt.graphics; version=0.0.1");



Setting up the Framework

//Yup it's that easy!
m_felix = new Felix(configMap);

m_felix.start();



Supplying Services to the Non-
OSGi code

public <S> S getService(Class<S> serviceClass)
{

ServiceReference<S> ref = m_activator.getContext()
.getServiceReference(serviceClass);

return m_activator.getContext().getService(ref);
}



Supplying more than one
public <S> List<S> getServices(Class<S> serviceClass, String filter)
{

Collection<ServiceReference<S>> refCollection = null;
try {

refCollection = hostActivator.getContext().getServiceReferences(serviceClass, filter);
} catch (InvalidSyntaxException e) {

LOGGER.error("Invalid Syntax", e);
}
List<S> result = new ArrayList<S>();

if(refCollection == null)
{

throw new ModuleException("No services References Could be found for the given class");
}

for(ServiceReference<S> currentRef : refCollection)
{

result.add(hostActivator.getContext().getService(currentRef));
}

return result;
}



DEMO!



Summary

● Modularity is often an afterthought
● Some projects have difficulty being fully 

OSGi
● Embedding OSGi can provide many of the 

same benefits
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● Adding Modularity Afterwards with Embedded OSGi (Talk and Code)
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https://github.com/bobpaulin/embedded-felix-talk
http://felix.apache.org/site/apache-felix-framework-launching-and-embedding.html
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Bob Paulin
@bobpaulin/bob@bobpaulin.com/http://bobpaulin.com
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