
Adding Modularity Afterward with
Embedded OSGi

Adding Modularity Afterward with
Embedded OSGi

About Me – Bob Paulin
• @bobpaulin/bob@bobpaulin.com/http://bobpaulin.com
●Independent Consultant

• Web Centric Platforms
• Business Enablement
• Continuous Delivery

Chicago Java Users Group (CJUG) Community Leader
• Need a Mentor? mentors@cjug.org
• Want to Present in Chicago? present@cjug.org

Proud Father/Husband with 3 kids (and a Cat since Developers all seemed
to like cats)

mailto:bob@bobpaulin.com
http://bobpaulin.com/
mailto:mentors@cjug.org
mailto:present@cjug.org

Regret

Application Development Cycle

Hope?

If we could start over what
would we want?

Modularity

Options?

OSGi
● Mature 10+ Years
● Tools
● Modularity is enforced
● Versioning
● Complex Classloading
● Runtime

● Mature 10+ Years
● Tools
● Modularity is enforced
● Versioning
● Complex Classloading
● Runtime

Inversion of Control (IoC)
● Lightweight
● Easily added to existing systems
● Tools
● Modularity not enforced (DIY)
● No Versioning

● Lightweight
● Easily added to existing systems
● Tools
● Modularity not enforced (DIY)
● No Versioning

Jigsaw
● Java 7....8...9??
● Versioning
● Interoperability with OSGi (Penrose)

● Java 7....8...9??
● Versioning
● Interoperability with OSGi (Penrose)

OSGi: Start with One
big Bundle?

OSGi: When does
embedding make sense?

Want an Isolated
Third-Party
Container

Working with
OSGi unfriendly
Libraries.

Licensing/Proprietary
Code

No
Budget/Time/Desire
for full OSGi

Embedded Design/Implementation

Exposing packages to the
framework via System Packages

Minimum required bundles

● Felix Framework● Felix Framework

A few more to consider...

● Felix Config Admin
● Gogo Shell
● Web Console + HTTP
● SCR + Annotations
● Apache ACE Management Agent

● Felix Config Admin
● Gogo Shell
● Web Console + HTTP
● SCR + Annotations
● Apache ACE Management Agent

A few more to consider...

● Configuration
● Factories
● Resources

● Configuration
● Factories
● Resources

Good places to start

● Framework creates threads
● Use only one Framework Instance
● Requires some IDE tricks
● Package Tangling may get worse before it

gets better (Use Sonar)

● Framework creates threads
● Use only one Framework Instance
● Requires some IDE tricks
● Package Tangling may get worse before it

gets better (Use Sonar)

Caveats

Talk is Cheap.

Time for an example.

● SOAR 2D Grid Game
● Written in C++ with Java Bindings
● Code is Coupled
● SWT
● Multiple Games

● SOAR 2D Grid Game
● Written in C++ with Java Bindings
● Code is Coupled
● SWT
● Multiple Games

An Embedded Usecase With
Tanks

Embedded Design/Implementation

Exposing packages to the
framework via System Packages

configMap.put(Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA,
 "edu.umich.soar,edu.umich.soar.gridmap2d.config," +
 "edu.umich.soar.gridmap2d,edu.umich.soar.gridmap2d.world," +
 "edu.umich.soar.gridmap2d.visuals," +
 "org.eclipse.swt.widgets,org.eclipse.swt.graphics; version=0.0.1");

Setting up the Framework

//Yup it's that easy!
m_felix = new Felix(configMap);

m_felix.start();

Supplying Services to the Non-
OSGi code

public <S> S getService(Class<S> serviceClass)
{

ServiceReference<S> ref = m_activator.getContext()
.getServiceReference(serviceClass);

return m_activator.getContext().getService(ref);
}

Supplying more than one
public <S> List<S> getServices(Class<S> serviceClass, String filter)
{

Collection<ServiceReference<S>> refCollection = null;
try {

refCollection = hostActivator.getContext().getServiceReferences(serviceClass, filter);
} catch (InvalidSyntaxException e) {

LOGGER.error("Invalid Syntax", e);
}
List<S> result = new ArrayList<S>();

if(refCollection == null)
{

throw new ModuleException("No services References Could be found for the given class");
}

for(ServiceReference<S> currentRef : refCollection)
{

result.add(hostActivator.getContext().getService(currentRef));
}

return result;
}

DEMO!

Summary

● Modularity is often an afterthought
● Some projects have difficulty being fully

OSGi
● Embedding OSGi can provide many of the

same benefits

● Modularity is often an afterthought
● Some projects have difficulty being fully

OSGi
● Embedding OSGi can provide many of the

same benefits

References
● Adding Modularity Afterwards with Embedded OSGi (Talk and Code)

● Felix Embedded Documentation

● Adding Modularity Afterwards with Embedded OSGi (Talk and Code)

● Felix Embedded Documentation

https://github.com/bobpaulin/embedded-felix-talk
http://felix.apache.org/site/apache-felix-framework-launching-and-embedding.html
https://github.com/bobpaulin/embedded-felix-talk
http://felix.apache.org/site/apache-felix-framework-launching-and-embedding.html

Bob Paulin
@bobpaulin/bob@bobpaulin.com/http://bobpaulin.com

mailto:bob@bobpaulin.com
http://bobpaulin.com/

	Slide1
	Slide3
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

