Using Intel® Edison to Fuse Embedded Linux with Existing Drone Flight Controllers

Joel B. Rosenzweig (joel.b.rosenzweig at intel.com)
Mark F. Brown (mark.f.brown at intel.com)
Motivation

• Build an extensible drone platform on top of an existing Low Level Flight Controller
What is Edison?

- Compute Module
- Atom Silvermont
- Dual Core 32-bit 500MHz
- 1GB RAM, 4GB eMMC
- Wi-Fi (802.11a/b/g/n), BT 4.0
- 70-pin Hirose Connector
- Quark 32-bit 100MHz Processor
Why Edison?

• Integrated Wireless Connectivity
• Small Form Factor (35.5 x 25 x 3.9 mm)
• Low Power Design
• Processing Power
• Stackable Design
Multirotor Drone
Multirotor Drone
Software Stack High Level Flight Controller

- Yocto Project Based Distribution
- Runs on Edison
- Reads waypoint mission data and commands from web server
- Reads sensor data from sensor hub
- Computes bearing to target
- Generates output to control desired throttle, pitch, roll and yaw
- Transmits output to LLFC via MUX
- Logs data to file system + transmits telemetry via radio
Sensor Hub

- Atmel ATMega 328P
- ADAFruit 10-DOF IMU
 - 3 axis Accelerometer
 - 3 axis Gyroscope
 - 3 axis Magnetometer
 - Barometer
- uBlox GPS
- Retrieves sensor data via I²C
- Transmits serial packet to Edison
GPS Serial to I2C Converter

- Atmel ATMega 328P
- uBlox 6M
- Initialize GPS module 5Hz at 57600 Baud
- Format GPS serial data to single packet
- Convert to I2C for Sensor Hub
• Propeller P8X32A
• Multiplexes:
 • Serial Commands from Edison
 • R/C RX inputs
 • MUX selector
 • Manual stick inputs (flight controls & bailout)
• Outputs PWM to Flight Controller
Navigation Planner

- Webserver on Edison
- node.js
- Express
- Socket I/O
- Arduino
- Google Maps v3 API
- Telemetry
- Waypoint Support
Navigation Planner Software Layout

Tablet/Laptop

Browser
 Google Maps v3
 Socket I/O

Internet

Edison

Server
 Express
 Socket I/O
 Domain Socket

HLFC
 Auto Pilot
 Domain Socket

MUX
Telemetry Visualization
Results (Highlights)

- Altitude Testing
- Yaw Testing
- Waypoint Navigation
- GEO Fencing
- Telemetry Data Visualization
- Bailout/Safety Switch
- GPS accuracy
- Short Development Time
Results (Pitfalls)

• Sensor Problems
 • Magnetometer
 • Barometer
 • Signal Noise

• Software Problems
 • Node.js error handling
 • Arduino IDE issues
 • Toolchain
 • File Syncing
 • Boot time
Results (Pitfalls Continued)

- Board Level Problems
- Lack of Power Domain Control
- Power Supply Noise
- I/O Voltage Level Conversion
What is Next?

• Board Level Optimizations
• Navigation Tightening
 • Better Heading Estimation
 • Improved Flight Speed
 • Flight Simulation
• Object Detection, Avoidance, Following
 • Vision System
 • Terrain Avoidance
What is Next? (Continued)

• Drone Code protocol support
• Leverage Quark/RTOS
• Cellular Modem (Internet Connection)
• Weather Database Query En Route
Project Websites

- Project Page: (GitHub) http://goo.gl/hTVcDY
- YouTube Videos
 - Test Flight To Waypoint
 - https://www.youtube.com/watch?v=zwC07qLmMzQ
 - Test Flight Over Controlled Yaw
 - https://www.youtube.com/watch?v=OTQT48VxALY
- Edison Product Page
Special Thanks

- We wish to thank the following authors for their contributions to the open source community.
- Mikal Hart, for TinyGPS++, http://arduiniana.org/libraries/tinygps/
- Bill Porter, for EasyTransfer, http://www.billporter.info/2011/05/30/easytransfer-arduino-library/
- I. Kövesdi, for the Great Circle Distance and Great Circle Bearing calculation, http://obex.parallax.com/object/256
Questions?