
TCG TPM2 Software Stack
& Embedded Linux

Philip Tricca

philip.b.tricca@intel.com

mailto:philip.b.tricca@intel.com

Background

• Security basics

• Terms

TPM basics

• What it is / what it does

• Why this matters / specific features

TPM Software Stack

• Architecture / Design

• Getting Started

• Getting Results

Agenda

There is no magic, there are no silver bullets

• “security” takes the whole village

• Architecture to implementation to
maintenance

• There is no such thing as “a secure
system”, only secure enough

• Ideally the informed CUSTOMER defines
“secure enough”

Level Set

Using the TPM does not a secure system make

• Disable services / exclude tools / minimize attack surface

• Use writable storage only when you must

• Regular updates, automatic updates! SIGNED UPDATES!

• Mandatory access control (SELinux!)

• Increase complexity in system, increase level of effort to secure it

• Securing general purpose computers is a nightmare

• Embedded systems -> security is more tractable

The Basics

A process by which we identify & document

• Assets

• Threats to them

• Prioritize: decide where your efforts are best spent

• Identify trade-offs

• Accurately describe the properties of your system

• What it protects against: risks mitigated

• What it does not: risks accepted

• And most importantly: why

Threat modeling

Please do?

• Much of the body of knowledge was developed in Microsoft

• MSDN has lots of free content

• https://msdn.microsoft.com/en-us/library/ff648644.aspx

• OWASP Application Threat Modeling

• https://www.owasp.org/index.php/Application_Threat_Modeling

• Adam Shostack’s book was my introduction (2014)

• Swiderski and Snyder book (2004)

If your team doesn’t model threats …

https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://www.owasp.org/index.php/Application_Threat_Modeling

Classic security concepts:

• Confidentiality

• Integrity

• Authentication

• Authorization (satisfy TPM2 policy)

• Non-repudiation

Use the TPM2 to build systems that implement these principles

Terms

Small Crypto Engine

• Cryptographic
functions

• Hashing functions

• Key generation &
protection

• RNG

• Integrity measurement
/ reporting

What is a TPM?

I/O

Asymmetric Engine(s)

Hash Engine(s)

Symmetric Engine(s)

Mgmt Operations

Authorization

Volatile Memory
• PCR banks
• Transient Objects
• Sessions

Random # Generation

Non-Volatile Memory
• Hierarchy Seeds
• Monotonic Counters
• Storage

Key Generation

Power Mgmt

Execution Engine

TPM2 Implementation: domain separation

IP block

Apps

Discrete IP Block
(a chip)

B
U

S

I/O

Protected
Capability

Shielded
Location

……

……

Integrated IP
Block

I/O

Protected
Capability

Shielded
Location

……

……

IP block

OS

Documented in TPM Rev 2.0 Part-1: Architecture

• Frames protections offered by TPM2 in section 10:

• Protected Capability

• Shielded Location

• Protected Object

• Protected capabilities must TPM severely memory constrained

• offload storage to application / Resource Manager

• encrypt protected objects when not in shielded location

• Nature of physical security protections dictated by customer

TPM Protections

Integrity: Measured Boot
Platform
Firmware

R
T

M Option
ROMs

OS

R
e

se
t

P
C

R

Boot
Loader

App
App
App

PCR[0]: 0x….

PCR[1]: 0x….

PCR[23]: 0x….

Platform Configuration Register (PCR) & the “Extend” operation

• PCR is a Shielded Location, Extend operation is Protected Capability

• PCR is volatile memory capable of holding hash value

• Typically 24 PCRs in a TPM, addressed with index: PCR[0] – PCR[23]

• PCR usage (hashes of components) defined in TCG platform specs

Software Measurement is synonymous with the hash produced

• Extend hash of object (executable, config etc) into PCR

• Extend: PCR[0]N = H(PCR[0]N-1 | X)

• Requires hash function: computationally infeasible to forge, easy to verify

Integrity: Measured Boot

TCG TPM2 Software Stack: design goals
System API (SYS)

• 1:1 mapping to

TPM2 commands

• No

– file IO

– crypto

– heap

Enhanced SAPI (ESYS)
• 1:1 mapping to TPM2

Commands
• Additional commands for

utility functions
• Provides Cryptographic

functions for sessions
• No file IO
• Requires heap

Feature API (FAPI)
• File IO
• Requires heap
• Must be able to do retries
• Context based state
• Must support the possibility of

reduced application code size
by offering static libraries

TPM Access Broker and Resource Manager (TABRM)
• Power management
• Potentially no file IO – depends on power mgmt.

• Abstract Limitations of TPM Storage
• No crypto

TPM Command Transmission Interface (TCTI)
• Abstract command / response mechanism
• Decouple APIs driving TPM from command transport / IPC

• No crypto
• No heap, file I/O

IPC

TPM2 software stack
System API & TCTI specification

• TPM2 Command Transmission Interface (TCTI)

– Abstraction to hide details of IPC mechanism

– libtcti-device & libtcti-socket

– Adds flexibility missing from 1.2 TSS

• System API (SAPI)

– Serialize C structures to TPM command buffers

– One-to-one mapping to TPM commands (all 100+)

– Minimal external dependencies: libc

– Suitable for highly embedded applications / UEFI

Application

SAPI

TCTI

Tss2_Sys_XXX

TPM2 TSS Components: w/ resourcemgr

TPM2

ResourceMgr

TCTI

Access
Broker

IP
C

 B
a

ck
e

n
d Resource

Manager

C
o

m
m

a
n

d

R
e

sp
o

n
se

IPC / Transport

Application

SAPI

TCTI

Tss2_Sys_XXX

C
o

m
m

a
n

d

R
e

sp
o

n
se

Application

SAPI

TCTI

Tss2_Sys_XXX

C
o

m
m

a
n

d

R
e

sp
o

n
se

Application

SAPI

TCTI

Tss2_Sys_XXX

C
o

m
m

a
n

d

R
e

sp
o

n
se

Intel implementing TCG TSS as Open Source

• Project hosted under ’01.org’ on Github

• https://github.com/01org/tpm2.0-tss

• https://github.com/01org/tpm2.0-tools

• 3-clause BSD == maximum flexibility

• Development on GitHub “in the open”

• I don’t always have the answer, someone else may though

• Packages working their way into distros

• Lots of churn in the next few months

Implementation & Code

https://github.com/01org/tpm2.0-tss
https://github.com/01org/tpm2.0-tools

My personal OSS work

• meta-measured: https://github.com/flihp/meta-measured

• TPM1.2 & 2.0 packages

• Reference ‘live’ images & initrds

• Grub2 patches extend measured launch (soon obsoleted by upstream!)

• + BSP for Minnowboard Max to add TPM2 support as MACHINE_FEATURE

• Working on ARM reference platform + Infineon SPI TPM

• Still some work in TSS code to support big-endian systems (facepalm)

Embedded Builds

https://github.com/flihp/meta-measured

TPM requires RNG for key creation, nonce generation.

• an entropy source and collector

• mixing function (typically, an approved hash function)

• Differentiation between TPMs w/ certification (NIST SP800-90 A)

• TPM RNG integrated with Linux kernel RNG

• If you need an entropy source DO NOT use TPM RNG alone

• Load the ‘tpm_rng’ kernel driver & setup rng-tools

• Use /dev/(u)?random

• https://scotte.org/2015/07/TPM-for-better-random-entropy

Use case: RNG

https://scotte.org/2015/07/TPM-for-better-random-entropy

TPM2 for basic crypto: sign / encrypt / hash

• HMAC required for authorization

• Asymmetric algorithm, RSA 2k for compatibility, usually ECC

• See Davide Guerri’s blog for a great howto:
https://dguerriblog.wordpress.com/2016/03/03/tpm2-0-and-
openssl-on-linux-2/

• tpm2_getpubek: create TPM2 primary key & export pub & name

• tpm2_getpubak: create TPM2 signing key & export pub & name

• tpm2_hash: hash some file / data & generate ticket

• tpm2_sign: use key (from getpubak) to sign hash

Use case: crypto operations

https://dguerriblog.wordpress.com/2016/03/03/tpm2-0-and-openssl-on-linux-2/

TPM2 policy authorization as access control on TPM protected object

• Microsoft Bitlocker uses this mechanism for disk crypto keys

• OpenXT virtualization system uses similar mechanism

• Assumes measured boot records TCB in PCRs: software identity

• Create TPM object holding auth data for disk crypto

• Bind object to PCR policy: select PCRs based on TCB & requirements

• On successful boot w/ PCRs in expected state, load object

• Can be used to hold secrets for LUKS volumes

Use case: Sealed Storage aka Local Attestation

Many thanks for contributions to materials:

• Monty Wiseman @ General Electric

• Andreas Fuchs @ Fraunhofer SIT

• Lee Willson @ Security Innovation

& Everyone who’s contributed code / answered questions on GitHub!

• Bill Roberts @ Intel OTC

• Imran Desai @ Intel IOTG

Shout-Outs!

Thanks!

Threat Modeling: Designing for Security – Adam Shostack

• http://www.wiley.com/WileyCDA/WileyTitle/productCd-
1118809998.html

Trusted Platforms UEFI, PI and TCG-based firmware

• https://people.eecs.berkeley.edu/~kubitron/cs194-24/hand-
outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf

Open Security Training Trusted Computing Module:

• http://opensecuritytraining.info/IntroToTrustedComputing

Resources(1)

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118809998.html
https://people.eecs.berkeley.edu/~kubitron/cs194-24/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf
http://opensecuritytraining.info/IntroToTrustedComputing

Davide Guerri TPM2.0 talk @ FOSDEM

• https://fosdem.org/2017/schedule/event/tpm2/

TPM RNG linux howto:

• https://scotte.org/2015/07/TPM-for-better-random-entropy

Resources(2)

https://fosdem.org/2017/schedule/event/tpm2/
https://scotte.org/2015/07/TPM-for-better-random-entropy

