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● The latency means the time after a task is invoked and 
before it is executed, depending on Linux scheduler 
latency, the deferred execution methods, and the priorities 
of competing tasks.

● Introduce new measurement tools by efficient ways to 
visualize system latency. (available on GitHub!)

● Major target: PREEMPT_RT (Locking primitives: spinlocks are replaced by  RT Mutexes. 

Interrupt Handlers run in a kernel thread)

● Analyze and reduce the latency
○ ARM Cortex-A9 multi-core for case study

Goals of This Presentation



● Minimize Linux Interrupt Processing Delays from external 
event to response

PREEMPT_RT in a nutshell

Source: 4 Ways to Improve Performance in Embedded Linux Systems, Michael Christofferson, Enea (2013)



Preemptive Kernel

● preemption: the ability to interrupt tasks at many “preemption points”
● The longer the non-interruptible program units are, the longer is the waiting 

time of a higher priority task before it can be started or resumed.
● PREEMPT_RT makes system calls preemptible as well

● Controlling latency by allowing kernel to be preemptible 
everywhere

● Increase responsibility; decrease throughput

Source: Understanding the Latest Open-Source Implementations of Real-Time Linux for Embedded Processors, Michael Roeder, Future Electronics



PREEMPT_NONE
Preemption is not allowed in Kernel Mode
Preemption could happen upon returning to user space



PREEMPT_VOLUNTARY
Insert explicit preemption point in Kernel: might_sleep
Kernel can be preempted only at preemption point

CONFIG_PREEMPT

● Implicit preemption in Kernel
● preempt_count

○ Member of thread_info
○ Preemption could 

happen when 
preempt_count == 0



PREEMPT_RT_FULL:
Threaded Interrupts

Reduce non-preemptible cases in kernel: spin_lock, interrupt



PREEMPT_RT Internals
excellent talk “Understanding a Real-Time System” by Steven Rostedt

● softirq is removed
○ ksoftirqd as a normal kernel thread, 

handles all softirqs
○ softirqs run from the context of who 

raises them
● Exceptions: for softirqs raised by real 

hard interrupts
○ RCU invocation
○ timers

System Management 
Threads
● RCU
● Watchdog
● Migrate
● kworker
● ksoftirqd
● posixcputimer



PREEMPT_RT: Replace spin_lock_irqsave with spin_lock

include/linux/spin_lock.h

#ifdef CONFIG_PREEMPT_RT_FULL

# include 

<linux/spinlock_rt.h>

#else /* PREEMPT_RT_FULL */

 include/linux/spinlock_rt.h

#define spin_lock_irqsave(lock, flags) \

  do { \

    typecheck(unsigned long, flags); \

    flags = 0; \

    spin_lock(lock); \

  } while (0)

...

#define spin_lock(lock) \

  do { \

    migrate_disable(); \

    rt_spin_lock(lock); \

  } while (0)
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interrupt handling in Linux

● Interrupt controller sends a hardware signal
● Processor switches mode, banking registers and 

disabling irq
● Generic Interrupt vector code is called
● Saves the context of the interrupted activity (any 

context not saved by hardware)
● Identify which interrupt occurred, calls relevant ISR
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Latency Measurement:
Wake up on IDLE CPU

Scheduler needs to put woken up task on CPU, otherwise, 
latency increases.

Things preventing that:
● Process priority: Low prio task waits on the rq while 

high prio given cpu
● Process scheduling class: task is in scheduling class 

like SCHED_OTHER instead of SCHED_FIFO
● SCHED_FIFO and SCHED_RR always scheduled 

before SCHED_OTHER / SCHED_BATCH



● Clocksource and High Resolution Timer
Accuracy of timer in Linux depends on the accuracy of hardware and software interrupts.
Timer interrupts are not occurring accurately when the system is overloaded. It would cause timer latency in kernel

● Task switching cost
Process switching cost is significantly larger than thread switching. Process switching needs to flush TLB. 

If RT application consists of lots of processes, process switching measurement is necessary

● Page faults
Initial memory access causes page fault, and this causes more latency.
Page-out to swap area also causes page faults. Use mlockall and custom memory allocators

● Multi-core
tasks can move from local core to remote cores. This migration causes additional latency.
Tasks can be fixed to a specific core by cpuset cgroup

● Locks
spin_locks are now mutexes, which can sleep. spin_locks must not be in atomic paths. That is, preempt_disable or 
local_irq_save. RT mutex uses priority inheritance, and no more futexes. cost gets higher in general.

Microscope Measurements
HRTIMER_SOFTIRQ is executed before 
softirq handler because higher prio task



● Hackbench
○ test scheduler and unix-socket (or pipe) performance 

by spawning processes and threads
● stress / stress-ng

○ stress tests and compare various
○ The normalized data is then summed to give an overall view 

of system impact each different kernel has on different 
types of metrics across a very wide range of stress tests.

● mctest
○ our in-house periodic task which evaluates

robot control algorithms in real products.
○ Algorithms can be executed in both user

and kernel mode.

Before real measurements, prepare workload



General latency measurement

● cyclictest measures the delta from when it's scheduled to wake up 
from when it actually does wake up.

● Use HRT. The data gathered allows one to see the distribution of 
latencies from timer delays

● A long tail of latencies shows that some paths in the kernel are 
taking a while to be preempted during critical sections where the 
kernel cannot be interrupted.

● Disadvantage of histogram is the loss of timing information of the 
latency events, and there is no way to retrospectively gain 
information which task was preempted by which task and which 
phase of the preemption was responsible for the elevated latency



● measure latency of response to a stimulus
● sleep for a defined time
● measure actual time when woken up
● calculate difference of actual and expected time

while (!shutdown) {

    clock_nanosleep(&next);

clock_gettime(&now);

diff = calcdiff(now, next);

next += interval;

}

How cyclictest works

Source: Real-Time Linux on Embedded Multi-Core 
Processors Andreas Ehmanns, MBDA Deutschland GmbH



More Tools for 
Measurements



● Perf
○ Traditional way of understanding resource utilization
○ Samples CPU’s PMU periodiclly
○ Longer sampling period
○ Use statistical methods to estimate figures

Profiling Tools



● Sched Profiler
○ Proposed in paper “A Decade of Wasted Cores” 

(EuroSys 2016)
○ Patch the Linux scheduler and insert profiling points
○ Profiling points get executed every time
○ Capturing every scheduler stat change

Profiling Tools



● Visualization: Heat Map
○ Each line is a logic core
○ Each Pixel is 10us
○ Each line wrap is 10ms

● By Default
○ Profiles Number of items in Run Queue 
○ Balance events
○ Task migration

Intel Core-i5 Gen-6th CPU running hackbench

3 Tasks

2 Tasks

1 Task

4 Tasks

CPU Idle

>5 Tasks



● What we modified
○ Keep the heat map
○ Profile the context switch time and switch-to PID
○ Plot the Point of context switches

CTX points of Cortex-A9 running hackbench:

Context 
Switch



CTX points of Cortex-A9 running stress & cyclistest

Zoom

Zoom

RT Task, Cyclictest Queued in Run Queue

Context switched to RT Task, Cyclistest



PREEMPR_RT Cortex-A9 running cyclictest at 1ms

The cycle time of RT task entering the Run Queue

Δt



PREEMPT_RT Cortex-A9 running cyclictest

The cycle time of RT task being context-switched, entering CPU

Δt



PREEMPT_RT Cortex-A9 running cyclictest

Time delayed in Run Queue, waiting for scheduler to reschedule

Δt



Reduce the Latency



● Preemption is disabled after acquiring raw_spinlock
○ Preemption off for long time is a problem (high prio task cannot run)

○ PREEMPT_RT makes critical sections preemptible 
● When disable preemption ( effect of locking CPU to other tasks), use 

need_resched() to check if higher priority task needs CPU 
to break out of preempt off section.

● Convert OSQ lock to  
atomic_t to reduce 
overhead

Linux mutex utilizes OSQ lock which will spin  
in some conditions with PREEMPT_RT.

optimistic spinning for sleeping

Tips on PREEMPT_RT

Source: Debugging Real-Time issues in Linux, Joel Fernandes (2016)



● IRQ threads are SCHED_FIFO tasks with priority 50. 
Priority can be changed, so that other RT tasks could have higher priority.

● Avoid unnecessary  (raw_)spinlock_irq_save

static void atomisp_css2_hw_load(hrt_address addr, void *to, uint32_t n) {

unsigned long flags;

char *_to = (char *) to;  unsigned int _from = (unsigned int) addr;

spin_lock_irqsave(&mmio_lock, flags);

raw_spin_lock(&pci_config_lock);

for (unsigned i = 0; i < n; i++, _to++, _from++) *_to = _hrt_master_port_load_8(_from);

raw_spin_unlock(&pci_config_lock);

spin_unlock_irqrestore(&mmio_lock, flags)

}

IRQ again

// can be replaced with
disable_irq_nosync(irq);
spin_lock(&mmio_lock)

 spin_lock_irqsave does not disable interrupts in PREEMPT_RT_FULL.

Deeper discussion in: Debugging Real-Time issues in Linux, Joel Fernandes (2016)



● System calls have almost universally been implemented 
as a synchronous mechanism, where a special processor 
instruction is used to yield userspace execution to the 
kernel.

● FlexSC implements exceptionless system calls in Linux 
kernel, and an accompanying user-level thread package 
(binary compatible with PThread), that translates legacy synchronous 
system calls into exception-less ones transparently to 
applications.

● FlexSC improves performance of Apache by up to 116%, 
MySQL by up to 40%, and BIND by up to 105% while 
requiring no modifications to the applications.

System Call Overhead



● Kernel Mode Linux (KML): Execute user processes in 
kernel mode

● Benefit of executing user programs in kernel mode is that 
the user programs can access a kernel address space 
directly.
user programs can invoke system calls very fast because it is unnecessary to switch between a kernel mode and a user mode 
by using costly software interruptions or context switches.

● Unlike kernel modules, user programs are executed as 
ordinary processes (except for their privilege level), so 
scheduling and paging are performed as usual.
Although it seems dangerous to let user programs access a kernel directly, safety of the kernel can be ensured, 
for example, by static type checking, software fault isolation, and so forth.

Eliminate latency to enter system call



Case Study:
ARM Cortex-A9 MP



● Altera Cyclone V SoC Development Kit

○ CPU : ARM Cortex-A9 Dual Core

○ Memory : 1 GB DDR3

● NXP i.MX6Q Sabre SDB

○ CPU : ARM Cortex-A9 Quad Core

○ Memory : 1 GB DDR3

Experimental Platforms



● Buildroot based System

● Linux Kernel 4.4 with PREEMPT_RT,

● Optional additional patches:

○ Wasted Cores Patches

○ Kernel Mode Linux

Experiment Configurations



● RT test bench:

○ Cyclictest form rt-tests
■ cyclictest -mnq -p 90 -h 1000 -i 1000 -l 1000000
■ Run in KML if KML is enabled

○ Mctest
■ User-Space Program

● Run in KML if KML is enabled

■ Kernel-Space Kernel Module

Benchmark Suite



● Mctest

○ Measuring the determinism of code execution time

○ Developed to simulate Robot Motion Contol Algorithm

○ Could execute as 

■ User-space program

■ Kernel module in Kernel Space

○ Outputs 

■ The execution time of each run

Experiment Test Benches



Experiment Test Benches



● Loads and arguments used

○ Hackbench
■ hackbench -s 512 -l 1024 -P

○ Stress
■ stress --cpu 3 --timeout=10
■ stress --cpu 8 --timeout=10
■ stress --cpu 4 --io 2 --vm 2 --vm-bytes 128M --timeout=10

○ Mctest, User-space

○ Mctest, Kernel-space

○ Netperf

Experiment Setup



● Kernel Mode Linux’s impact on real-time performance

● SMP schedulability
○ Unbalanced Workload
○ RT Wake-up of Overloaded Core
○ KML’s Impact to Scheduler

● Short Inter-arrival Time

● Scheduler Duration

Experiments and Measurements



● The following test is running with

○ i.MX6 sabre SDB

○ CPU 1 isolated and set as tickless

○ L2 Cache Locked Down to CPU 1

○ Load is in combination of:
■ Hackbench

■ Netperf

○ Test Bench: mctest

Kernel Mode Linux’s impact on real-time performance



Kernel Mode Linux’s impact on real-time performance

User-Space Mctest Kernel-Space Mctest

● Without Kernel Mode Linux 
● The imapct from system calls are high
● Result has a lot of spikes



Kernel Mode Linux’s impact on real-time performance

User-Space Mctest in KML Kernel-Space Mctest

● Kernel Mode Linux 
● Siginificant reduce impact from system calls
● Result is comparable against Kernel-Space Mctest



● By default, Linux Scheduler balances load every 10ms 

● Thus, short burst, which < 10ms , will not be balanced

● Wasted Cores won’t help this kind of case

SMP schedulability - Unbalanced workload

Cyclone V SoC, PREEMPT_RT (1px = 10us)

Cyclone V SoC, PREEMPT_RT + Wasted Cores Patch  (1px = 10us)

Stress (4 CPU, 2 IO, 2 VM=128M) on Cyclone V SoC



● Short burst RT task will be schedualed on overoaded cores

● This short burst of unbalance won’t harm long term throughput

● But could cause impact to the RT performance

SMP schedulability - Wake-up on overloaded

Cyclone V SoC, PREEMPT_RT  (1px = 1us)

Stress (3 CPU) + Cyclictest (1ms)  on Cyclone V SoC



● KML reduces system call overhead

● Thus, no impact on the scheduler behavior and latency

SMP schedulability - KML’s impact

PREEMPT_RT  (1px = 1us)

PREEMPT_RT + Wasted Cores Patch + KML  (1px = 1us)

Stress (8CPU) on Cyclone V SoC



Short Inter-arrival Time - Timer IRQ against Cyclictest’s main 
Task

PREEMPT_RT (1px = 10us)

Mctest Kernel + Cyclictest (1ms) on Cyclone V SoC



Short Inter-arrival Time - Timer IRQ against Cyclictest’s main Task

PREEMPT_RT (1px = 10us)

Mctest Kernel + Cyclictest (1ms) on Cyclone V SoC

Timer IRQ

Cyclictest’s main Task



Short Inter-arrival Time - RT Task against Cyclictest’s main Task

PREEMPT_RT (1px = 10us)

Mctest Kernel + Cyclictest (1ms) on Cyclone V SoC



Short Inter-arrival Time - RT Task against Cyclictest’s main Task

PREEMPT_RT (1px = 10us)

Mctest Kernel + Cyclictest (1ms) on Cyclone V SoC

RT Task

Cyclictest’s main Task



● Can cause IRQ Bottom halves delay

● Can cause cost of scheduling raise

● Would be harmful to the real-time performance

Short Inter-arrival Time



Scheduler Duration

CTX Points  (1px = 1us)

No Load + Cyclictest (1ms) 

on Cyclone V SoC, PREEMPT_RT

Delay from Entering RQ to CTX of each run Vertical:(1px = 0.1us)

1 200
0us

10us

20us

30us

runs



Wake-up Latency of Scheduler

No Load + Cyclictest (1ms) on Cyclone V SoC, PREEMPT_RT

Max: 20us



Wake-up Latency of Scheduler

CTX Points  (1px = 1us)

Stress (3 CPU) + Cyclictest (1ms) 
on Cyclone V SoC, PREEMPT_RT

Delay from Entering RQ to CTX of each run Vertical:(1px = 0.1us)

1 200
0us

10us

20us

30us

runs



Wake-up Latency of Scheduler

Stress (3 CPU) + Cyclictest (1ms) 
on Cyclone V SoC, PREEMPT_RT

Max: 16us



Wake-up Latency of Scheduler

CTX Points  (1px = 1us)

Delay from Entering RQ to CTX of each run Vertical:(1px = 0.1us)

1 200
0us

10us

20us

30us

runs

Stress (8 CPU) + Cyclictest (1ms) 
on Cyclone V SoC, PREEMPT_RT



Wake-up Latency of Scheduler

Stress (8 CPU) + Cyclictest (1ms) 
on Cyclone V SoC, PREEMPT_RT

Max: 34us



Wake-up Latency of Scheduler

CTX Points  (1px = 1us)

Mctest Kernel + Cyclictest (1ms) 
on Cyclone V SoC, 

PREEMPT_RT

Delay from Entering RQ to CTX of each run Vertical:(1px = 0.1us)

1 200
0us

10us

20us

30us

runs



Wake-up Latency of Scheduler

Mctest Kernel + Cyclictest (1ms) 
on Cyclone V SoC, PREEMPT_RT

Max: 23us



● When scheduler enqueued a high priority task into run queue, it 

would require a period of scheduler duration before switching it 

in for execution.

● Scheduler duration between entering RQ and CTX would be at 

most 35us, depends on load.

Observation of Scheduler Duration

Programed
Timer Expiration

Effective
Timer Expired

Task Wake-up
Enter RQ

Task Start
CTX

Task
Swtiched-in

Wake-up Latency Scheduler 
Duration

CTX Latency ExecutingIRQ Latency, 
etc.



● Scheduler grantees O(1) on searching

● After identifying the next task for executing, scheduler would 

still spend extra time, which would vary with the load in 

scheduling run queue.

● The shorter the inter-arrival time, the larger the scheduler 

duration distribution spreads.

Observation of Scheduler Duration

Programed
Timer Expiration

Effective
Timer Expired

Task Wake-up
Enter RQ

Task Start
CTX

Task
Swtiched-in

Wake-up Latency Scheduler 
Duration

CTX Latency ExecutingIRQ Latency, 
etc.



● Kernel configs, Buildroot configs, and misc: 
https://github.com/sonicyang/rt-experiments

● Kernel Mode Linux (KML):
https://github.com/sonicyang/KML

● Mctest:
https://github.com/sonicyang/mctest

● WastedCores Patches: 
https://github.com/sonicyang/wastedcores

Our contribution for Real-time system 
measurements and enhancements

https://github.com/sonicyang/rt-experiments
https://github.com/sonicyang/rt-experiments
https://github.com/sonicyang/KML
https://github.com/sonicyang/KML
https://github.com/sonicyang/mctest
https://github.com/sonicyang/mctest
https://github.com/sonicyang/wastedcores
https://github.com/sonicyang/wastedcores


● We have evaluated the real-time behavior of Linux by profiling kernel 
scheduler and measuring the latency of various kernel variants. 

● An intensive interrupt load can cause long OS latencies due to the 
design of the interrupt processing mechanism. We proposed new 
tools to visualize task scheduling in fine-grained scale(microsecond 
level). This enabled us not only focusing on interrupt latency, but also 
scheduler durations, lock, and etc.

● It would thus be highly desirable to combine existing techniques, e.g 
KML, isolated CPU, tickless kernel, to improve task responsiveness 
under various target application characteristics, on top of 
PREEMPT_RT.

Conclusion



● Understanding a Real-Time System, Steven Rostedt
● Evaluation of Real-time Property in Embedded Linux, 

Hiraku Toyooka, Hitachi
● Real-time Throughput, Gregory Haskins & Steve Rostedt
● An Essential Relationship between Real-time and 

Resource Partitioning, Yoshitake Kobayashi, TOSHIBA
● A Decaded of Wasted Cores, Jean-Pierre Lozi, et al. 

(EuroSys 2016)
● FlexSC: Flexible System Call Scheduling with 

Exception-Less System Calls, Livio Soares & Michael 
Stumm (OSDI 2010)
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