
State of the U-Boot
Thomas Rini, Konsulko Group

❑ Separate projects of PPCBoot and ARMBoot, prior to
November 2002.

❑ Merged, renamed to U-Boot, added x86
❑ Since then added more than 10 other architectures
❑ Wolfgang Denk as head custodian for over 10 years
❑ Tom Rini as head custodian since September 2012
❑ Lots more on Wikipedia

History, in brief

Community

❑ Over 20 companies and 110 individual developers every
release in the last year

❑ A number of talks at various industry conferences
❑ Contributing back up to the Linux Kernel when we share

code

Architecture and SoC support

❑ 32bit ARM
▪ Atmel, Rockchip, Texas Instruments, NXP i.MX,

Allwinner, Xilinx, UniPhier, Tegra, Marvell, STM32
❑ 64bit ARM

▪ NXP Layerscape, Allwinner, Xilinx, UniPhier, Tegra,
Marvell

❑ MIPS (Boston, Malta, etc)
❑ x86 (32 and 64bit, Baytrail, Broadwell, Quark, etc)
❑ … and this is of course an incomplete list

Important Features

❑ SPL, Falcon Mode
❑ Cryptographic image support

▪ Proprietary (TI, NXP) and not (FIT images)
❑ Generic distribution boot support

▪ Fedora, Debian, others now, FreeBSD in progress
❑ EFI application support

Testing / CI

❑ travis-ci.org
❑ test.py
❑ tbot
❑ Coverity
❑ board farms

Testing / CI (Travis CI)

❑ Provides run-time-limited automated build and test
instances.

❑ Able to build 97% of possible boards
❑ 10 QEMU-based test.py runs and sandbox
❑ Anyone can connect with their github and test prior to

submission

Testing / CI (test.py)

❑ Based on pytest framework
❑ Works on real hardware, QEMU and sandbox

▪ Target local and Target/Host tests
❑ We also have test/fs/fs-test.sh

▪ FAT and ext2/3/4 tests

Testing / CI (tbot)

❑ “tbot is a tool for executing testcases on boards”
❑ Falls somewhere in between Jenkins and test.py
❑ Heiko Schocher has a good video demonstration on

youtube titled “tbot git bisect demo”
▪ https://www.youtube.com/watch?v=zfjpj3DLsx4

Testing / CI (coverity)

❑ Community instance under “Das U-boot”
▪ Limited to building for a single configuration, so

sandbox
▪ 45 defects in the last year

❑ Various vendors with commercial instances

Testing / CI (board farms)

❑ DENX
❑ Various private companies

My board farm

FlashAir, YKUSH and Relays

❑ FlashAir WiFi enabled SD cards
▪ See more at http://konsulko.com/?p=1419

❑ YKUSH
▪ See more at https://www.yepkit.com/products/ykush

❑ Relay
▪ See more at

http://www.robot-electronics.co.uk/htm/eth008tech.ht
m

http://konsulko.com/?p=1419
https://www.yepkit.com/products/ykush

buildman, not MAKEALL

❑ The venerable MAKEALL script was retired in July 2016
❑ The replacement, buildman, was introduced in April 2013
❑ More flexible

▪ Multiple architectures in a single command
▪ Describe what to build in regex form
▪ Size comparison

binman

❑ New tool for creating a functional output from one or more
binaries

❑ Uses device tree syntax to describe the output.
❑ For example:

▪ x86 describes where to place U-Boot and various required
other firmware entries

▪ Allwinner describes where to place SPL and then U-Boot
in a single binary file

▪ aarch64 can use this to describe where to place ATF,
U-Boot, etc.

Kbuild / Kconfig

❑ Kbuild, the make system from the Linux kernel, has been
fully implemented for about 3 years.

❑ Kconfig transition, in progress since then.
▪ Implementation is in-sync with v4.10
▪ Emphasis on having logic in Kconfig files to ensure

reasonable and minimal defconfig files
▪ Start making use of the new imply keyword

In progress

❑ Driver Model and Device Tree
▪ Including SPL
▪ Including figuring out how to deal with the extremely

resource constrained systems (smartweb, Ci20)
❑ Device Tree

▪ Live tree
▪ Being able to pass our tree to Linux

Near term goals

❑ Finish Kconfig migration this calendar year
❑ SPL + Linux and kexec? Happy to help!
❑ More test.py tests
❑ Strike up the conversation with kernelci.org again
❑ Find more time for stackoverflow questions
❑ Expand Coverity coverage

