
Hardware Assisted Tracing on ARM
with CoreSight and OpenCSD

Mathieu Poirier

In this Presentation
● End-to-end overview of the technology

● Not an in-depth presentation on CoreSight

● Emphasis on how to use rather than what it is

● Mostly covers the integration with the standard Perf core

● Everything that is needed to get started

● As such
○ Brief introduction on CoreSight
○ Enabling CoreSight on a system
○ OpenCSD library for trace decoding
○ Trace acquisition scenarios
○ Trace decoding scenarios

What is CoreSight
● The name given to an umbrella technology

● Covers all the tracing needs of an SoC, with and without external tools

● Our work concentrate on HW assisted tracing and the decoding of those traces

● What is HW assisted tracing?
○ The ability to trace what is done by a CPU core without impact on its performance
○ No external HW need to be connected
○ The CPU core doesn’t have to run Linux!

● The CoreSight drivers and framework can be found under

drivers/hwtracing/coresight/

How Does HW Assisted Tracing Work?
● Each core in a system is fitted with a companion IP block called an Embedded

Trace Macrocell (ETM)

● Typically one embedded trace macrocell per CPU core

● OS drivers program the trace macrocell with specific tracing characteristics
○ There are many examples on doing this in the coming slides

● Once triggered trace macrocells operate independently

● No involvement from the CPU core, hence no impact on performance

● ** Be mindful of the CoreSight topology and the memory bus **

Program Flow Trace
● Traces are generated by the HW in a format called Program flow trace

● Program flow traces are a series of waypoint taken by the processor

● Waypoints are:
○ Some branch instruction
○ Exceptions
○ Returns
○ Memory barriers

● Using the original program image and the waypoints, it is possible to

reconstruct the path a processor took through the code.

● Program flow traces are decoded into executed instruction ranges using the

OpenCSD library

CoreSight On A System
● All CoreSight components are supported upstream

● Except for CTI and ITM
○ CTI will be available soon
○ ITM is an older IP - relatively simple to support

● The reference platforms are Vexpress TC2 (ARMv7) and Juno (ARMv8)

● The CoreSight topology for any system is covered in the DT

● The topology is expressed using the generic V4L2 graph bindings
○ The reference platform DTs are upstream and cover pretty much all the cases
○ http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/graph.txt

● With the correct DT additions, CoreSight should just work…

http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/graph.txt
http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/graph.txt

CoreSight - Common Pitfalls
● There is a lot of ground to cover:

○ Like any powerful technology, CoreSight is complex
○ Integration with Perf handles most of the hard stuff
○ OpenCSD library does the rest

● Power Domains and Clock:
○ Most implementation will split CoreSight devices between the core and debug power domains
○ Clocks need to be enabled → the drivers should be taking care of that (if the DT is correct)

● Power Domain management:
○ Trace macrocells often share the same power domain as the CPU they are associated with
○ If CPUidle takes the CPU in a deep sleep state, the power domain is often switched off
○ *** Don’t use CoreSight when CPUidle is enabled ***

○ When developing your own solution, keep the “Power Down Control” register (TRCPDCR:PU) in
mind!

Booting with CoreSight Enabled
sdhci-pltfm: SDHCI platform and OF driver helper

usbcore: registered new interface driver usbhid

usbhid: USB HID core driver

coresight-etm4x 22040000.etm: ETM 4.0 initialized

coresight-etm4x 22140000.etm: ETM 4.0 initialized

coresight-etm4x 23040000.etm: ETM 4.0 initialized

coresight-etm4x 23140000.etm: ETM 4.0 initialized

coresight-etm4x 23240000.etm: ETM 4.0 initialized

coresight-etm4x 23340000.etm: ETM 4.0 initialized

usb 1-1: new high-speed USB device number 2 using ehci-platform

NET: Registered protocol family 17

9pnet: Installing 9P2000 support

root@linaro-nano:~# ls /sys/bus/coresight/devices/

20010000.etf 220c0000.cluster0-funnel 23240000.etm

20030000.tpiu 22140000.etm 23340000.etm

20040000.main-funnel 23040000.etm coresight-replicator

20070000.etr 230c0000.cluster1-funnel

22040000.etm 23140000.etm

root@linaro-nano:~#

Integration of CoreSight with Perf
● Perf is ubiquitous, well documented and heavily used by developers

● Offers a framework already geared toward tracing

● Hides most of the complexity inherent to CoreSight

● Provides tools facilitating the integration of trace decoding
○ No need to deal with the “metadata”

● Trace Macrocell are presented as PMUs (Performance Management Unit) to

the Perf core
○ Very tight control on when traces are enabled and disabled
○ Zero copy between kernel and user space when rendering data

● PMU registration is done by the CoreSight framework → no intervention needed

● The CoreSight PMU is known as cs_etm by the Perf core.

CoreSight Tracers Presented as PMUs
linaro@linaro-nano:~$ tree /sys/bus/event_source/devices/cs_etm

/sys/bus/event_source/devices/cs_etm

├── cpu0 -> ../platform/23040000.etm/23040000.etm
├── cpu1 -> ../platform/22040000.etm/22040000.etm
├── cpu2 -> ../platform/22140000.etm/22140000.etm
├── cpu3 -> ../platform/23140000.etm/23140000.etm
├── cpu4 -> ../platform/23240000.etm/23240000.etm
├── cpu5 -> ../platform/23340000.etm/23340000.etm
├── format
│ ├── cycacc
│ └── timestamp
├── nr_addr_filters
├── perf_event_mux_interval_ms
├── power
│ ├── autosuspend_delay_ms
│ ├── control
│ ├── runtime_active_time
│ ├── runtime_status
│ └── runtime_suspended_time
├── subsystem -> ../../bus/event_source
├── type
└── uevent
9 directories, 11 files

linaro@linaro-nano:~$

Common sysFS PMU entries

OpenCSD for Trace Decoding
● Open CoreSight Decoding library

● A joint development effort between Texas Instrument, ARM and Linaro

● Free and open solution for decompressing Program Flow Traces

● Currently support ETMv3, PTM and ETMv4

● Also has support for MIPI trace decoding (output from STM)

● Fully integrated with Perf

● Available on gitHub[1] for anyone to download, integrate and modify

● In-depth presentation in recent CoreDump blog post[2]

[1]. https://github.com/Linaro/OpenCSD

[2]. http://www.linaro.org/blog/core-dump/opencsd-operation-use-library/

https://github.com/Linaro/OpenCSD

Putting it all Together
So far we know that….

● We can do HW assisted tracing on ARM using CoreSight IP blocks

● The Linux kernel offers a framework and a set of drivers supporting CoreSight

● The openCSD library is available to anyone who wishes to decode CoreSight

traces

● CoreSight and openCSD have been integrated with Perf

● It is now time to see how things fit together and use the technology in real-world

scenarios

Getting the Right Tools
● First, the OpenCSD library needs to be downloaded

○ On gitHub[1] the master branch carries the OpenCSD code
○ Stable versions are tagged
○ Older version had dedicated branches -- please stick with the latest
○ The “HOWTO.md” tells you which kernel branch will work with the latest version
○ Kernel branches will disappear in a near future

● The kernel branches on gitHub carry the user space functionality
○ There is always a rebase for the latest kernel version
○ perf [record, report, script]
○ Upstreaming of these tools is currently underway
○ Include those patches in a custom tree if CoreSight integration with Perf is to be used

[1]. https://github.com/Linaro/OpenCSD

Compiling OpenCSD and the Perf Tools
● OpenCSD is a stand alone library - as such it is not part of the kernel tree

● OpenCSD libraries need to be linked with the Perf Tools
○ If perf tools aren’t linked with OpenCSD, trace decoding won’t work

● Follow instructions in the “HOWTO.md” on gitHub

● Always set environment variable “CSTRACE_PATH”

 CC tests/thread-mg-share.o
 CC util/cs-etm-decoder/cs-etm-decoder-stub.o
 CC util/intel-pt-decoder/intel-pt-decoder.o

 CC util/auxtrace.o
 CC util/cs-etm-decoder/cs-etm-decoder.o
 LD util/cs-etm-decoder/libperf-in.o

No CS decoding

With CS decoding

Using CoreSight with Perf
● CoreSight PMU works the same way as any other PMU

./perf record -e event_name/{options}/ --perf-thread ./main

● As such, in its simplest form:
./perf record -e cs_etm/@20070000.etr/ --perf-thread ./main

● Always specify a sink to indicate where to put the trace data
○ A list of all CoreSight devices is available in sysFS

linaro@linaro-nano:~$ ls /sys/bus/coresight/devices/

20010000.etf 20040000.main-funnel 22040000.etm 22140000.etm

230c0000.cluster1-funnel 23240000.etm coresight-replicator 20030000.tpiu

20070000.etr 220c0000.cluster0-funnel 23040000.etm 23140000.etm

23340000.etm

Using CoreSight with Perf (Cont’d)
● The default options will often generate too much trace data

● The option ‘k’ and ‘u’ can be used to limit tracing to kernel or user space

./perf record -e cs_etm/@20070000.etr/u --perf-thread ./main

./perf record -e cs_etm/@20070000.etr/k --perf-thread ./main

● Kernel space tracing requires root privileges

● Address filters are provided to limit tracing to specific areas
○ Address range filters → use the “filter” keyword
○ Start/stop filters → user the “start” and “stop” keywords

Using CoreSight Address Range Filters
● Trace between one address and another

● Exclude jumps outside of the range

Kernel Space example:
$ perf record -e cs_etm/@20010000.etr/k --filter \

'filter 0xffffff8008562d0c/0x48' --per-thread ./main

User space example:

$ perf record -e cs_etm/@20070000.etr/u --filter \

'filter 0x72c/0x40@/opt/lib/libcstest.so.1.0' --per-thread ./main

Using CoreSight Start/Stop Filters
● Start at one address, stops at another

● Include jumps outside of the range

Kernel Space example:
perf record -e cs_etm/@20070000.etr/k --filter \

'start 0xffffff800856bc50,stop 0xffffff800856bcb0' --per-thread ./main

perf record -e cs_etm/@20070000.etr/k --filter \

'start 0xffffff800856bc50,stop 0xffffff800856bcb0, \

 start 0xffffff8008562d0c,stop 0xffffff8008562d30' --per-thread ./main

User space example:

perf record -e cs_etm/@20070000.etr/u --filter \

'start 0x72c@/opt/lib/libcstest.so.1.0' \

'stop 0x26@/main' --per-thread ./main

Limitation on CoreSight Filters
● Limited to the amount of address comparator found Trace Macrocells

○ Implementation dependent, currently limited to 8

● Range and start/stop filters can’t be combined in the same session

Example that is not supported:

perf record -e cs_etm/@20070000.etr/k --filter \

'start 0xffffff800856bc50,stop 0xffffff800856bcb0', \ // start/stop

 filter 0x72c/0x40@/opt/lib/libcstest.so.1.0' \ // Range

--per-thread ./main

Using CoreSight with Perf (Cont’d)
● Trace data are found in the “perf.data” file

perf report --dump perf.data

0x728 [0x30]: PERF_RECORD_AUXTRACE size: 0xf0 offset: 0 ref: 0x48b2b5695d22eed5 idx: 0 tid: 1796

cpu: -1

. ... CoreSight ETM Trace data: size 240 bytes

 0: I_ASYNC : Alignment Synchronisation.

 12: I_TRACE_INFO : Trace Info.

 17: I_ADDR_L_64IS0 : Address, Long, 64 bit, IS0.; Addr=0xFFFFFF800857ED08;

 48: I_ASYNC : Alignment Synchronisation.

 60: I_TRACE_INFO : Trace Info.

 65: I_ADDR_L_64IS0 : Address, Long, 64 bit, IS0.; Addr=0xFFFFFF800857ED08;

 96: I_ASYNC : Alignment Synchronisation.

 108: I_TRACE_INFO : Trace Info.

 113: I_ADDR_L_64IS0 : Address, Long, 64 bit, IS0.; Addr=0xFFFFFF800857ED08;

 144: I_ASYNC : Alignment Synchronisation.

A Simple but Real Example
“main.c”

#include <stdio.h>

int coresight_test1(int val);

int main(void)

{

int val;

val = coresight_test1(10);

printf("val: %d\n", val);

return 0;

}

“libcstest.c”

int coresight_test1(int val)

{

int i;

/*

 * A simple loop forcing the

 * instruction pointer to move

 * around.

 */

for (i = 0; i < 5; i++)

val += 2;

return val;

}

Code to
trace

Objdump the Code to Trace
$ aarch64-linux-gnu-objdump -d libcstest.so.1.0

000000000000072c <coresight_test1>:

 72c: d10083ff sub sp, sp, #0x20

 730: b9000fe0 str w0, [sp,#12]

 734: b9001fff str wzr, [sp,#28]

 738: 14000007 b 754 <coresight_test1+0x28>

 73c: b9400fe0 ldr w0, [sp,#12]

 740: 11000800 add w0, w0, #0x2

 744: b9000fe0 str w0, [sp,#12]

 748: b9401fe0 ldr w0, [sp,#28]

 74c: 11000400 add w0, w0, #0x1

 750: b9001fe0 str w0, [sp,#28]

 754: b9401fe0 ldr w0, [sp,#28]

 758: 7100101f cmp w0, #0x4

 75c: 54ffff0d b.le 73c <coresight_test1+0x10>

 760: b9400fe0 ldr w0, [sp,#12]

 764: 910083ff add sp, sp, #0x20

 768: d65f03c0 ret

Generating Traces on the Target
root@linaro-nano:~# date

Wed Sep 7 20:17:36 UTC 2016

root@linaro-nano:~# uname -mr

4.8.0-rc5+ aarch64

root@linaro-nano:~# ls /opt/lib/libcstest.so*

/opt/lib/libcstest.so /opt/lib/libcstest.so.1 /opt/lib/libcstest.so.1.0

root@linaro-nano:~# perf record -e cs_etm/@20070000.etr/u --filter 'filter \

 0x72c/0x40@/opt/lib/libcstest.so.1.0' --per-thread ./main

val: 20

[perf record: Woken up 1 times to write data]

[perf record: Captured and wrote 0.002 MB perf.data]

root@linaro-nano:~# ls -l perf.data

-rw------- 1 root root 8176 Sep 7 20:17 perf.data

Collecting Traces on the Target
root@linaro-nano:~# ls -l perf.data

-rw------- 1 root root 8176 Sep 7 20:17 perf.data

root@linaro-nano:~# tar czf cs_example.tgz perf.data ~/.debug

● Why do we need the ~/.debug directory?
○ Because it contains a snapshot of all the binaries involved in the traces session
○ Comes for free with Perf
○ Everything is collected on your behalf - except the kernel image

The Importance of the “.debug” Directory
root@linaro-nano:~# tree .debug

.debug

├── [kernel.kallsyms]
│ └── 942a60ae69427f5dbaa1c3541671e504509bd5db
│ └── kallsyms
├── [vdso]
│ └── f1e1d7c7f2c709fb14ee135018417767eecbc0dd
│ └── vdso
├── home
│ └── linaro
│ └── main
│ └── 9a6850fab2ebbe386d3619bce3674a55622f2872
│ └── elf
├── lib
│ └── aarch64-linux-gnu
│ ├── ld-2.21.so
│ │ └── 94912dc5a1dc8c7ef2c4e4649d4b1639b6ebc8b7
│ │ └── elf
│ └── libc-2.21.so
│ └── 169a143e9c40cfd9d09695333e45fd67743cd2d6
│ └── elf

....

└── opt
 └── lib
 └── libcstest.so.1.0
 └── 3b3051b8a67f212a66e383fc90db3c2bde8f936f
 └── elf

18 directories, 6 files

Off Target Trace Decoding: “perf report”
$ tar xf cs_example.tgz

$ rm -rf ~/.debug // remove previous trace data

$ cp -dpR .debug ~/ // copy the current trace data

$ perf report --stdio // by default file “perf.data” is used

To display the perf.data header info, please use --header/--header-only options.

#

#

Total Lost Samples: 0

#

Samples: 8 of event 'instructions:u'

Event count (approx.): 55

#

Children Self Command Shared Object Symbol

........

#

 81.82% 81.82% main libcstest.so.1.0 [.] 0x000000000000073c

 7.27% 7.27% main libcstest.so.1.0 [.] 0x000000000000072c

 5.45% 5.45% main libcstest.so.1.0 [.] 0x0000000000000754

 5.45% 5.45% main libcstest.so.1.0 [.] 0x0000000000000760

Off Target Trace Decoding: “perf script”

$ perf script

 main 1796 4 instructions:u: 7fb19c972c [unknown] (/opt/lib/libcstest.so.1.0)

 main 1796 3 instructions:u: 7fb19c9754 [unknown] (/opt/lib/libcstest.so.1.0)

 main 1796 9 instructions:u: 7fb19c973c [unknown] (/opt/lib/libcstest.so.1.0)

 main 1796 9 instructions:u: 7fb19c973c [unknown] (/opt/lib/libcstest.so.1.0)

 main 1796 9 instructions:u: 7fb19c973c [unknown] (/opt/lib/libcstest.so.1.0)

 main 1796 9 instructions:u: 7fb19c973c [unknown] (/opt/lib/libcstest.so.1.0)

 main 1796 9 instructions:u: 7fb19c973c [unknown] (/opt/lib/libcstest.so.1.0)

 main 1796 3 instructions:u: 7fb19c9760 [unknown] (/opt/lib/libcstest.so.1.0)

VMA portion ELF portion

Off Target Trace Decoding: “perf script”
FILE: /opt/lib/libcstest.so.1.0 CPU: 3

 7fb19c972c:d10083ff sub sp, sp, #0x20

 7fb19c9730:b9000fe0 str w0, [sp,#12]

 7fb19c9734:b9001fff str wzr, [sp,#28]

 7fb19c9738:14000007 b 7fb19c9754 <__gmon_start__@plt+0x134>

● Where does the first part of the address come from?

$ perf script --show-mmap-events | grep PERF_RECORD_MMAP2

 main 1796 PERF_RECORD_MMAP2 1796/1796: [0x400000(0x1000) @ 0 08:02 33169 1522333852]: r-xp /home/linaro/main

 main 1796 PERF_RECORD_MMAP2 1796/1796: [0x7fb19db000(0x2f000) @ 0 08:02 574 1811179601]: r-xp

/lib/aarch64-linux-gnu/ld-2.21.so

 main 1796 PERF_RECORD_MMAP2 1796/1796: [0x7fb19c9000(0x12000) @ 0 08:02 38308 4289568329]: r-xp

/opt/lib/libcstest.so.1.0

 main 1796 PERF_RECORD_MMAP2 1796/1796: [0x7fb1880000(0x149000) @ 0 08:02 543 1811179570]: r-xp

/lib/aarch64-linux-gnu/libc-2.21.so

Off Target Trace Decoding: “perf script”

$ cat range.sh

#!/bin/bash

EXEC_PATH=${HOME}/work/linaro/coresight/kernel-stm/tools/perf/

SCRIPT_PATH=${EXEC_PATH}/scripts/python/

XTOOLS_PATH=${HOME}/work/linaro/coresight/toolchain/gcc-linaro-aarch64-linux-gnu-4.8-2013.11_linux/bin/

perf --exec-path=${EXEC_PATH} script --script=python:${SCRIPT_PATH}/cs-trace-ranges.py

$./range.sh

range: 7fb19c972c - 7fb19c973c

range: 7fb19c9754 - 7fb19c9760

range: 7fb19c973c - 7fb19c9760

range: 7fb19c973c - 7fb19c9760

range: 7fb19c973c - 7fb19c9760

range: 7fb19c973c - 7fb19c9760

range: 7fb19c973c - 7fb19c9760

range: 7fb19c9760 - 7fb19c976c

Off Target Trace Decoding: “perf script”

$ cat disasm.py

#!/bin/bash

EXEC_PATH=${HOME}/work/linaro/coresight/kernel-stm/tools/perf/

SCRIPT_PATH=${EXEC_PATH}/scripts/python/

XTOOLS_PATH=${HOME}/work/linaro/coresight/toolchain/gcc-linaro-aarch64-linux-gnu-4.8-2013.11_linux/bin/

perf --exec-path=${EXEC_PATH} \

 script --script=python:${SCRIPT_PATH}/cs-trace-disasm.py -- \

 -d ${XTOOLS_PATH}/aarch64-linux-gnu-objdump

Off Target Trace Decoding: “perf script”
FILE: /opt/lib/libcstest.so.1.0 CPU: 3

 7fb19c972c:d10083ff sub sp, sp, #0x20

 7fb19c9730:b9000fe0 str w0, [sp,#12]

 7fb19c9734:b9001fff str wzr, [sp,#28]

 7fb19c9738:14000007 b 7fb19c9754 <__gmon_start__@plt+0x134>

FILE: /opt/lib/libcstest.so.1.0 CPU: 3

 7fb19c9754:b9401fe0 ldr w0, [sp,#28]

 7fb19c9758:7100101f cmp w0, #0x4

 7fb19c975c:54ffff0d b.le 7fb19c973c <__gmon_start__@plt+0x11c>

FILE: /opt/lib/libcstest.so.1.0 CPU: 3

 7fb19c973c:b9400fe0 ldr w0, [sp,#12]

 7fb19c9740:11000800 add w0, w0, #0x2

 7fb19c9744:b9000fe0 str w0, [sp,#12]

 7fb19c9748:b9401fe0 ldr w0, [sp,#28]

 7fb19c974c:11000400 add w0, w0, #0x1

 7fb19c9750:b9001fe0 str w0, [sp,#28]

 7fb19c9754:b9401fe0 ldr w0, [sp,#28]

 7fb19c9758:7100101f cmp w0, #0x4

 7fb19c975c:54ffff0d b.le 7fb19c973c <__gmon_start__@plt+0x11c>

...

...

Things I Haven’t Talked About
● Integration with Perf:

○ When collecting traces in kernel space, the “vmlinux” file doesn’t end up in the .debug directory

○ Supports “snapshot mode” letting users do trace acquisition endlessly

○ At this point only ARMv8 is integrated with perf → fairly easy to do for ARMv7

● By design, things work the same way on Intel PT

● CoreSight framework and drivers can be used from sysFS

● Upstreaming
○ All the kernel space part of the solution will be present in the 4.9 cycle

○ The user space, i.e “perf tools” are actively being upstreamed

● Support for “Cross Trigger Interface” (CTI) is coming

Thank You for Attending

The Linaro CoreSight Team:

Chunyan Zhang

Tor Jeremiassen

Mike Leach

Serge Broslavsky

Mathieu Poirier

Thank You

For further information: www.linaro.org

http://www.linaro.org

