
2016

ELC-Europe 2016
Thursday, October 13 • 11:15 - 12:05
No, It's Never Too Late to Upstream Your Legacy Linux Based Platform



Agenda
● Questions and Answers

○ Why Upstreaming ?
○ Why mainline kernel ?
○ Why push code ?
○ Which workflow ?
○ How long does it take ?
○ How hard it is for an “old” platform ?
○ What about the benefits ?



Why should I push code for my (legacy) linux 
based platform ?

Question 1



Why should I push code for my (legacy) linux based platform ?

Always the same question, always the same answers.

More and more vendors had understood the strategic advantages to push 
code upstream.

But still very large vendors does not understand :

● They should publish the kernel code (sigh)
● They should push their kernel code in a git repo
● They should push clean code
● They should rework and push code upstream
● They should have a upstream based workflow for their linux products



Why should I push code for my (legacy) linux based platform ?

Hopefully, we can count some vendors that really participate in the 
upstream work like :

● Intel
● IBM
● Texas Instruments
● Atmel (Microchip)
● Broadcom
● Renesas
● Freescale (NXP)
● ...



Why should I push code for my (legacy) linux based platform ?

This is for large corporations, what about smaller vendors ?

We can them separate in two :

● SoC vendors
● Boards makers (or ODMs)

For SoC vendors, Semiconductor World is a tough, and design costs for 
a single SoC are really high, then IP companies like ARM, Synopsys, 
Cadence… takes a big chunk of the costs and sometimes won’t let you 
use their code for public work.



Why should I push code for my (legacy) linux based platform ?

For Board makers, the situation is even more complex.

Board makers are provided (when possible) with a very custom and 
complex BSP or SDK which targets either all possible uses cases of 
the SoC and very specific Reference Design uses cases.

Yes, sometimes ODMs does not even provide the kernel source (sigh) 
and even nothing when Android is involved in the product, because 
the Board vendor will only need to develop its custom Android App.



Why should I push code for my (legacy) linux based platform ?

But some SoC vendors participate actively to make (part) of their SoC 
family work (partly) upstream.

But these BSPs are often kept on old kernel releases (almost 3.x).

Some vendors even synchronize regularly with the latest Stable kernel 
and rebase their BSP on it (Renesas, …)

Open Source strategy of each SoC vendor should become the priority 
in the SoC selection for a new product design.



Hmm, why Upstream kernel is so important 
after all ?

Question 2



Hmm, why Upstream kernel is so important after all ?

Relying on Upstream kernel is important because (at least):

● You can get new features
○ Network features is the most important
○ USB Drivers
○ Performance Enhancement
○ …

● You can have bugfixes
● You can have enhanced security features
● You can the improve stability of your product



Making a product work is complex enough, 
why push code upstream ?

Question 3



Making a product work is complex enough, why push code upstream ?

For two simple reasons :

● Code maintenance ease
● Fair return to the community
● Strengthen the Linux Platform

It’s all !



Making a product work is complex enough, why push code upstream ?

● Code maintenance ease ?

be part of the kernel evolution !
code will stay clean and get API changes !

Basic Board/SoC support will help following each linux releases.

In this case, when a recent kernel is needed, forward porting will be 
faster and can be done regularly.

→ Gain time, gain money !



Making a product work is complex enough, why push code upstream ?

● Fair return to the community

This seems to be a communist concept !

But, if you stay realistic, Linux is free, Linux is powerful, modern, 
modular, clean (as possible) and can provide an industrial grade 
Operating System support.

Did you try to find a non-free alternative ? QNX ? Windows NT ?

These alternative are expensive, very expensive and often requires 
huge royalties !



Making a product work is complex enough, why push code upstream ?

● Strengthen the Linux Platform

Large number of contributors and great amount of very different 
platform to support are the keys to strenghten Linux, stabilize the code, 
enhance portability and ensure longevity of the project.

Don’t worry, all SoC designs are different, and it’s good !



How should I organize my upstream 
workflow ?

Question 7



How should I organize my upstream workflow ?

Some workflow examples :

● Maintain separate trees, one for the BSP and upstream 
to mainline for client that require recent linux versions

● Port all code from a stable BSP, when nearly complete 
rebase the BSP on the new linux version

● Iterate by porting the BSP kernel on each long term 
version, and in the meanwhile upstream as much as 
possible, …



How should I organize my upstream workflow ?

Mainline 
Kernel tree

Vendor BSP
Tree

v4.1 v4.4 v4.9 v4.?

BSP 
v1

BSP 
v1.1

BSP 
v1.2Upstream

Some code
to mainline

BSP 
v2

BSP 
v2.1

New 
version 
based on a 
new 
longterm



How should I organize my upstream workflow ?

Pros :

● BSP is stable
● Mainline kernel will sometime good support
● Some clients can use mainline

Cons :

● BSP kernel version becomes old at some time
● Rebasing on a new longterm will need a lot of work
● Back porting bugs and security fixes will become harder
● Back porting new features will create a hard to maintain kernel



How should I organize my upstream workflow ?

Mainline 
Kernel tree

Stable 
Longterm
 trees

Vendor BSP
Tree

v4.1 v4.4 v4.9 v4.?

v4.1.1 v4.1.2 v4.1.3 v4.1.4 v4.4.1 v4.4.2 v4.4.3 v4.4.4 v4.9.1 v4.9.2 v4.9.3 v4.9.4

BSP 
v1

BSP 
v1.1

BSP 
v1.2

BSP 
v1.3Rebase

on new
Longterm

Push code
to Mainline
from current
BSP



How should I organize my upstream workflow ?

Pros :

● BSP has always longterm new features, ~each year
● Mainline kernel will get near ~100% support
● BSP driver are reworked and cleaned up

Cons :

● Must maintain a separate team for upstreaming
● Rebasing on each longterm can be complex since drivers has changed
● 1y BSP update may be short for long term supported products, old 

BSP versions should also have bug and security fixes



How should I organize my upstream workflow ?

LTSI

LTSI initiative offers a way for vendors to base their product 
release on a stable kernel following the annual long-term 
version selection.





How long will it take me to push all this code 
upstream ?

Question 5



How much time will it take me to push all this code upstream ?

This a complex question without any clear answers.

The Linux development cycle must be understood !

Rework/Refactor is mandatory before and while submission retries.

Depending on subsystems and complexity, submission time can take 
most of the time.



How much time will it take me to push all this code upstream ?

The general mainlining workflow is to push code in each linux 
subsystems, one by one.

Coherency of the support for a platform is done over the time.

There is no current “methodology” to push an overall platform support 
at once, each maintainers will want to have control and review the 
code to conform to their habits and ease their future work.



How much time will it take me to push all this code upstream ?

This is why it can take over 2 or 3 releases to 
get a complete set of patches upstream and 
have a working kernel on a platform.

The initial support of a platform is the most 
frustrating period since it will need the full 
patchset to boot correctly, but for some 
reasons one subsystem will fail to merge on 
time for some reasons.



How much time will it take me to push all this code upstream ?

Some of the reasons for the delays are generally :

● Code does not match the subsystem style / code design / 
architecture (use of deprecated API, …)

● Code depends on headers part of an higher level subsystem (for 
examples dt-bindings includes for Device Tree support)

● Code depends on partly merged framework API
● Patch is posted too late, too close to the next merge window



How much time will it take me to push all this code upstream ?

Here are some very approximate times :

● Push initial support of a SoC : 2 or 3 versions → ~6 months
● For a simple driver, like PWM, I2C bus, … :

○ 1 week refactoring / cleanup / patchset preparation
○ 1 day to 1 week for each repost depending on complexity
○ 1 or 2 days for testing before and after merge window

● For a more complex driver like DRM, SATA or Audio driver
○ Initial refactoring time can be much longer, up to 1 or 2 months
○ Time for repost depends on testing time and size of refactoring
○ Such driver upstreaming could be iterated over multiple versions



How much time will it take me to push all this code upstream ?

Global times estimations :

● For a simple headless SoC with any power management :
○ 6 months to 9 months
○ Full time for 1 person, multiple resources won’t speed up but will 

permit more drivers submitted / refactored / tested per version
● For a very complex SoC with Video, Power Management, DSP 

Audio, modem, …
○ 18 months to multiple years depending of the original code 

quality and SoC complexity (Bus scaling, complex RPC code for 
Co-processors, complex Audio, secret GPU code, …)



I have an old Linux port for my SoC, how 
hard it would be to upstream this ?

Question 6



I have an old Linux port for my SoC, how hard it would be to upstream this ?

Since the Device Tree migration, the non-x86 support has changed a 
lot and simplified (is this the right word ?) support for complex SoCs 
by introducing some frameworks like :

● common clock framework
● pinctrl and gpiod
● generic interrupt
● reset
● drm
● ASoC
● ...



I have an old Linux port for my SoC, how hard it would be to upstream this ?

This means the traditional core in :

arch/arm/mach-mysoc/board.c
arch/arm/mach-mysoc/devices.c
arch/arm/mach-mysoc/pinmux.c
arch/arm/mach-mysoc/clock.c
arch/arm/mach-mysoc/include/mach/vmalloc.h
arch/arm/mach-mysoc/include/mach/mysoc.h
...

Is nearly finished !



I have an old Linux port for my SoC, how hard it would be to upstream this ?

With Device Tree support, the directory :

arch/arm/mach-mysoc/

Will only contain only very specific SoC code like SMP or special init 
code. And in ARM64, these directories are gone forever !

But where did the code go ?



I have an old Linux port for my SoC, how hard it would be to upstream this ?

In Device Tree, yes, but also in the linux subsystems directories like :

drivers/irqchip : for IRQ controller support
drivers/clocksource : for Tick and Clock source support
drivers/clk : For system clocks management
drivers/pinctrl : For pads, pins configuration and mux
drivers/reset : For internal reset lines control
…

All these coordinated by the device-tree nodes interconnections.



I have an old Linux port for my SoC, how hard it would be to upstream this ?

But, will it be hard ?

Yes

But you can have help, by using :

● Trainings (Linux Foundation, Free Electrons, …)
● Linux Experts (BayLibre, Free Electrons, Pengutronix, …)
● Working with the community as Greg KH explains



What about the benefits ?

Question 7



What about the benefits ?

● Increase in Code quality
○ External review can make the code better

● Minimize Code maintenance cost
○ At least for far less than off-tree

● Enable faster rebase and testing effort
● Clear and Open Software Strategy

○ No more obscure and non-reviewed dirty code
● Customer fidelity over well maintain codebase
● A good way to promote the company within the technical sphere

○ Could also make talented developers work for you



What about the benefits ?

● Money

Yes, it will minimize long term R&D costs !





Ressources about mainlining

http://elinux.org/Kernel_Mainlining

● talks
● best practices

https://ltsi.linuxfoundation.org/what-is-ltsi/advantages-upstream-alignment

● “Marketing” Advantages


