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Introduction
● Linaro

○ Collaborative engineering organization consolidating and optimizing open source software and 
tools for the ARM architecture.

● Technologies Division
○ Focusing on open source solutions for real world problems.

■ Firmware to Cloud
■ IoT to Enterprise

● Engineers
○ Ricardo Salveti
○ Michael Scott
○ Tyler Baker
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What are we building?
Firmware over the air (FOTA) application for multiple MCUs using the latest from the 

Zephyr project
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How does it work?
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Project Goals
● Application

○ Supports delivering firmware over the air
○ Partitions flash, and writes firmware downloaded to flash
○ Interfaces with device management systems in the cloud

● Bootloader
○ Cryptographically validates image updates

■ Rolls back if image update fails
■ Jumps to correct application partition if validation succeeds

● Hardware
○ Support a wide range of MCUs

● Technical Debt
○ Keep it low 

■ Upstreaming platform code
■ Keeping application changes in sync with upstream APIs

● Quality
○ Create a testable design
○ Automate all the things
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Initially Zephyr was the Wild, Wild West (think before 1.5 days), 

now it’s entered the Gold Rush phase of 1848 … 

but it’s *still* the Wild, Wild West!
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There are some large problems...
● Zephyr 1.6 and 1.7

○ New IP stack isn’t completely done.  
■ Much of the more popular functionality works to some degree, but expect bugs.  TCP via bluetooth 

6lowpan in particular still needs work. 

○ So many knobs.  
■ Expect to spend time debugging the right stack sizes or # of net bufs because the defaults aren’t optimal 

or they don’t apply to your use case.

○ Debug/Error logs don't print unless they are enabled.  
■ Everything is opt in at this point due to the need for smallest possible binaries.

○ IPv6 support over Bluetooth Low Energy is still on early days. 
■ Linux interface available via debugfs, and not yet used on production. 
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Internet Protocol and Bootloader
● We’ve gotten IP to work

○ It will take time to get fixes upstream, and others working on the upstream may solve the 
problem differently, so we want to keep continuous analysis going

● MCUBoot
○ Maintained in a separated tree (like a normal zephyr application), so API incompatibilities with 

Zephyr is expected
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Continuous Integration and Automation
● Keeping track of the sources

○ Zephyr
■ Three branches to test

● master (upstream)

● master-upstream-dev (upstream + linaro staged patches)

● v1.7-dev (upstream dev branch + linaro staged patches)

○ MCUBoot
■ Two branches to test

● master (upstream)

● master-upstream-dev (upstream + linaro staged patches)

○ FOTA Application
■ One branch to test

● master (upstream)

● These combination generate a matrix of permutations that constantly need to 

be validated
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Continuous Integration and Automation
● Strategies

○ Question that needed to be answered
■ How can we “stay close to upstream”

■ How can we “reduce any/all technical debt”

■ How can we do all this and still produce something stable

○ Our solutions
■ For each project, on each branch, on every single merge we automatically do:

● Build tests

● Run unit tests (Zephyr test applications) on supported hardware

● Run functional tests on our application of supported hardware

● Test end to end device update functionality

○ How does this help keep us sane?
■ We know the moment when a build, unit test, or functional tests fails upstream

● Allows us to locate a fix before we rebase our dev branch

● Bisect problems quickly


