
I2C Hacking Demystified
ELC North America 2016

Open IoT Summit 2016
Igor Stoppa

Creating, debugging
and operating a

custom I2C peripheral.

All product and company names are trademarksTM or registered®
trademarks of their respective holders.
Use of them does not imply any affiliation with or endorsement by
them.

Disclaimer on Third Parties

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Ideas for advanced bus configurations

•Recap

•Q/A

Typical Applications

● Interfacing with relatively slow peripherals.
Ex: sensors, mechanical actuators.

● Controlling “fast” peripherals, that use other channels for
exchanging data. Ex: codecs.

● In a PC, linux usually interacts over I2C with:
○ temperature and battery voltage meters;
○ fan speed controllers;
○ audio codecs.

● Multiple bus controllers, each at different speeds.

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Ideas for advanced bus configurations

•Recap

•Q/A

Introduction to the I2C Bus - Part 1

● Serial bus: http://www.i2c-bus.org/ http://www.robot-electronics.co.uk/i2c-tutorial

● Only 2 lines: Serial CLock and Serial DAta (plus ground).
● 4 speeds: 100kHz, 400kHz, 1MHz, 3.2MHz.
● Typically, 1 master device and 1 or more slaves.
● Communications are always initiated by a master device.
● Multiple masters can co-exist on the same bus (multi-

master).
● Open-Drain: both SDA and SCL need pull-up resistors.

http://www.i2c-bus.org/
http://www.i2c-bus.org/

Introduction to the I2C Bus - Part 2

● “Clock Stretching”
○ The master controls SCL, but a slave can hold it down

(because open drain), if it needs to adjust the speed.
○ The master must check for this scenario.
○ A slave can get stuck and jam the bus: need for reset

lines from the master to the slave.
● Typically 7-bit addressing, but also 10 bit is supported.
● Logical protocol: actual voltage levels are not specified

and depend on individual implementations.
Ex: 1.8V / 3.3V / 5.0V

Example of bus configuration

SDA

SCL

Master

S
D

A

S
C

L

Slave 1

S
D

A

S
C

L

Slave 2

P
ul

l U
p

P
ul

l U
p

Vdd1 Bi-Directional
Level Shifter

P
ul

l U
p

P
ul

l U
p

Vdd2

SDA1

SCL1

V1

SDA2

SCL2

V2

S
D

A

S
C

L

Slave 3

Open
Drain

Control
Gate Source

Protocol (simplified)

● 2 messages: read / write
● Start / Stop bit - represented as “[“ and “]”
● Address: 7 or 10 bits
● R/W bit: R = 1 / W = 0
● Byte on the bus: (Address << 1 | R/W)
● Registers

Ex:
Write - [address/write_bit register value(s)]
Read - [address/write_bit register [address/read_bit read(s)]

SCL - Serial CLock
SDA - Serial DAta

ACK Stop Bit

Start Bit

R/W Bit

0x20[0x10 0xBD]

Example of bus write cycle.

0x20[0x10 [

Example of bus read cycle - Part 1

0x21 0xBD]

Example of bus read cycle - Part 2

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Ideas for advanced bus configurations

•Recap

•Q/A

Custom Slaves

Why creating a custom I2C slave?

● Desired sensor/actuator unavailable with I2C interface.
● Less unique addresses available than slaves needed.
● Desired custom functionality on the slave:

○ Semi-autonomous reactions to stimuli.
○ Filtering/preprocessing input data.
○ Power optimization: custom “sensor hub” does the housekeeping while

the main processor is idle.
○ Realtime response to inputs.
○ [your imagination here]

How to design a custom I2C slave?
● Define requirements (see previous slide).
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Ideas for advanced bus configurations

•Recap

•Q/A

Key design criteria:
● Weight/Dimensions.
● Required computational power and average latency.

○ PC-like device
○ Embedded device, typically headless.

● Preferred programming language: interpreted vs compiled.
● Availability of busses/gpios for driving the slave(s):

○ GPIOs only: bitbang the protocol
○ I2C: user-space application vs kernel driver.
○ No GPIOs/I2C interfaces available: USB to I2C adapter.

Design of the I2C Master

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Ideas for advanced bus configurations

•Recap

•Q/A

● Take direct control of the bus with an ad-hoc device.
Examples:

○ Bus Pirate (useful also for other busses)
○ USB to I2C Master adapter, also based on the FTDI FT232R chip.
○ Custom device (could be a separate project).

● Snoop the bus with a logic analyzer or a scope/advanced meter.
Examples:

○ sigrok/pulseview with compatible logic analyzer
○ 2-channels standalone scope/meter

● Use slave-specific In Circuit Debugger/In Circuit Emulator:
Example:

○ AVR Dragon for AVR chips (Arduino UNO, Nano, Mini, MiniPro)

Debugging: Divide and Conquer.

Bus Pirate
● Primarily for development purposes.
● Can both sniff the bus and drive it.
● Console interface over serial (ttyACM) port,

including macros, or programmatic access for
several programming languages.

● Built-in pullup resistors and voltage sources
(5V / 3.3V)

● Supports many other protocols.

http://dangerousprototypes.com/docs/Bus_Pirate

https://en.wikipedia.org/wiki/Bus_Pirate

http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/docs/Bus_Pirate
https://en.wikipedia.org/wiki/Bus_Pirate
https://en.wikipedia.org/wiki/Bus_Pirate

USB to I2C adapter
● Small footprint.
● Suitable for permanent installations.
● No need for special connections on the host: it

can be used to interface with a typical PC.
● Variant available that is also SPI-capable.
● No console interface, only serial binary protocol.
● Requires protocol wrapper.

http://www.robot-electronics.co.uk/htm/usb_i2c_tech.htm

sigrok/pulseview ● De-facto standard for PC-driven measurements
on linux (but available on other OSes too).

● Support for vast range of logic analyzers, scopes
and meters.

● Various protocol decoders, including I2C.
● Useful for visualizing the logical signals and

debugging protocol errors.
● Even very low end, inexpensive HW can provide

a whole new dimension to debugging.

https://sigrok.org

https://sigrok.org/wiki/PulseView

https://sigrok.org/wiki/Supported_hardware

https://sigrok.org
https://sigrok.org
https://sigrok.org/wiki/PulseView
https://sigrok.org/wiki/PulseView
https://sigrok.org/wiki/Supported_hardware
https://sigrok.org/wiki/Supported_hardware

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Improvement Ideas

•Recap

•Q/A

Bus configuration

SDA

SCL

Master
@5V

S
D

A

S
C

L

Slave 1
@5V

P
ul

l U
p

P
ul

l U
p

5V
Bi-Directional
Level Shifter

P
ul

l U
p

P
ul

l U
p

3.3V

SDA1

SCL1

V1

SDA2

SCL2

V2

S
D

A

S
C

L

Master
@3.3V

S
D

A

S
C

L

Slave 2
@5V

Configuration
with

Alternative
Master @3.3V

How to design a custom I2C slave?
● Define requirements.
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves

Example:
Steering a
4WD Drone

The I2C slave:

● Controls the amount of
torque applied to each
wheel.

● Controls the direction each
wheel spins.

● Measures the rotation speed
of each wheel through an
optical encoder (Odometer).

● Exposes the parameters
above to the I2C Master.

Wheel Slave
uC

Odometer

Motor

x4

I2C Bus

Master

How to design a custom I2C slave?
● Define requirements (see previous slide).
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves

Selecting the Slave:
Arduino Mini Pro

(AVR328P)
● Enough pins/functions to provide for each wheel:

○ 1 PWM output with independent
configuration of the duty-cycle.

○ 2 GPIOs for selecting:
Forward, Reverse, Idle, Lock

○ 1 GPIO for registering odometer input as IRQ.
● I2C HW block for interrupt-driven i2c exchanges.
● Dedicated pins for SPI-based programming.
● Small footprint.
● Low Cost.
● The clone represented in the picture has layout

optimized for DIL socket mounting.

https://www.arduino.cc/en/Main/ArduinoBoardProMini

Slave-specific ICD:
AVR Dragon ● Supports various programming modes, included

SPI programming, through AVRDude.
● Doesn’t interfere with normal AVR operations, so

it can be left plugged into the system.
● After enabling debugWire interface, it allows

configuring HW/SW breakpoints, by a dedicated
backend for gdb/ddd.

http://www.atmel.com/webdoc/avrdragon/

http://www.nongnu.org/avrdude/

http://www.larsen-b.com/Article/315.html

http://www.atmel.com/webdoc/avrdragon/
http://www.atmel.com/webdoc/avrdragon/
http://www.nongnu.org/avrdude/
http://www.nongnu.org/avrdude/
http://www.larsen-b.com/Article/315.html
http://www.larsen-b.com/Article/315.html

How to design a custom I2C slave?
● Define requirements (see previous slide).
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves

Selecting the OS:
ChibiOS ● RTOS: preemption, tasks, semaphores, dynamic

system tic, etc.
● Small footprint: link only used code/data.
● Distinction between RTOS and BSP through HAL.
● GPLv3 for non-commercial use.
● Actively developed, but already mature.

However it had limited BSP support for AVR, lack of:

● interrupts driver for AVR GPIOs (added).
● I2C support for AVR slave mode (custom).

http://www.chibios.org/dokuwiki/doku.php

https://github.com/igor-stoppa/ChibiOS/tree/car/

http://www.chibios.org/dokuwiki/doku.php
http://www.chibios.org/dokuwiki/doku.php
https://github.com/igor-stoppa/ChibiOS/tree/car/
https://github.com/igor-stoppa/ChibiOS/tree/car/

How to design a custom I2C slave?
● Define requirements (see previous slide).
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves

For each wheel:

● Duty Cycle of the PWM signal used to drive it - 1 byte.
0xFF = max torque / 0x00 = no torque.

● Direction of rotation - 1 byte.
0x00 = idle / 0x01 = reverse / 0x02 = forward / 0x03 = locked

● Average period in between slots of the optical encoder - 2 bytes.
Writing anything resets the measurement.

Communication Parameters - 1

● Parameter Index - 1 nibble:
○ 0 = Duty Cycle
○ 1 = Direction
○ 2 = Average Period

● Wheel indexes - 1 nibble:
○ 0 = Left Rear
○ 1 = Right Rear
○ 2 = Right Front
○ 3 = Left Front
○ 4 = All

Communication Parameters - 2

How to design a custom I2C slave?
● Define requirements (see previous slide).
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves

Register format: 0xαβ
● α = Parameter Index
● β = Wheel Index

Address: 0x10

Bus Pirate format:
[= start bit
] = end bit
r = read byte
address times 2, for R/W bit

Sub-Protocol: registers

Example - in Bus Pirate Format:
[i2c_addr reg_addr=(parm,wheel) reg_value]

[0x20 0x20 0x02] Left Rear Forward

[0x20 0x21 0x01] Right Rear Backward

[0x20 0x22 0x01] Right Front Backward

[0x20 0x23 0x02] Left Front Forward

[0x20 0x14 0xFF] Wheels set to max torque

The car spins clockwise.

Key design criteria:
● Weight/Dimensions: must fit on the drone.
● Required computational power and average latency

○ Embedded device, it can provide enough computational power.
● Availability of busses/gpios for driving the slave(s):

○ Native I2C available on most candidates
○ user-space application is sufficient:

no requirement for extremely low latency, might change later on
● Preferred programming language: interpreted vs compiled.

Design of the I2C Master

● x86-64
● Built-in connectivity:

○ Wifi
○ Bluetooth
○ OTG - Ethernet over USB
○ Serial Console

● I2C available through add-on
breakout board, normally @3.
3V, here hacked @5V

http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
https://www.sparkfun.com/products/13034

Master:
Intel Edison

http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
https://www.sparkfun.com/products/13034
https://www.sparkfun.com/products/13034

5V Mod for Sparkfun I2C Breakout

Can accept 5V

Removed Pull-UP resistors

Disconnected
internal
voltage
regulators

Purpose:
make the I2C breakout
open drain, 5V compatible

Official Edison distro (based on Poky/OE) https:
//software.intel.com/en-us/iot/hardware/edison/downloads

Ubilinux (Debian port)
http://www.emutexlabs.com/ubilinux

Ostro Project using libmraa
https://download.ostroproject.org/builds/ostro-os/latest/images/edison/
http://iotdk.intel.com/docs/master/mraa/

OS: Linux Flavors

https://download.ostroproject.org/builds/ostro-os/latest/images/edison/
https://download.ostroproject.org/builds/ostro-os/latest/images/edison/

From Bus Pirate format to Python

Example - Python with libmraa:
#!/usr/bin/python

import mraa

x = mraa.I2c(1) # Select the correct I2C bus

x.address(0x10) # The library does the shift

x.writeReg(0x20, 0x02) # Left Rear Forward

x.writeReg(0x21, 0x01) # Right Rear Backward

x.writeReg(0x22, 0x01) # Right Front Backward

x.writeReg(0x23, 0x02) # Left Front Forward

x.writeReg(0x14, 0xFF) # Wheels: max torque

The car spins clockwise.

Example - in Bus Pirate Format:
[i2c_addr reg_addr=(parm,wheel) reg_value]

[0x20 0x20 0x02] Left Rear Forward

[0x20 0x21 0x01] Right Rear Backward

[0x20 0x22 0x01] Right Front Backward

[0x20 0x23 0x02] Left Front Forward

[0x20 0x14 0xFF] Wheels: max torque

The car spins clockwise.

Note:

Bus Pirate simply dumps data on the bus, so
the address 0x10 must be shifted left
because of the R/W bit.

Alternative Master:
BeagleBone Black

● Cortex A8
● Built-in connectivity:

○ Ethernet
○ Ethernet-over-USB
○ Serial Console

● I2C available through
standard connector, open
drain, compatible with @3.3V

● C userspace program using
libi2c.

https://beagleboard.org/black

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Ideas for advanced bus configurations

•Recap

•Q/A

● Add multi-master support
○ The current implementation is efficient wrt Slave time because it is

event-driven and there is action happens only as result of an IRQ firing
(no polling).

○ The Master, however, is polling the slave and polling is never a
particularly good idea:

■ poll too often and it will overload the system
■ poll too seldom and important events might escape the window-of-opportunity

● Add arbitrary capability to R/W memory areas over I2C
○ live debugging of the I2C Slave.
○ Useful for memory mapped peripherals.
○ Could be used in conjunction with the memory map & linker scripting.

Ideas for improvement

Overview

•Typical applications

•Introduction to the I2C bus

•Custom slaves - why and how

•Master

•Debugging methodology and tools

•Example: steering a 4WD drone.

•Ideas for advanced bus configurations

•Recap

•Q/A

Questions?

Thank you!

