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Typical Applications

● Interfacing with relatively slow peripherals.
Ex: sensors, mechanical actuators.

● Controlling “fast” peripherals, that use other channels for 
exchanging data. Ex: codecs.

● In a PC, linux usually interacts over I2C with:
○ temperature and battery voltage meters;
○ fan speed controllers;
○ audio codecs.

● Multiple bus controllers, each at different speeds.
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Introduction to the I2C Bus - Part 1

● Serial bus: http://www.i2c-bus.org/ http://www.robot-electronics.co.uk/i2c-tutorial

● Only 2 lines: Serial CLock and Serial DAta (plus ground).
● 4 speeds: 100kHz, 400kHz, 1MHz, 3.2MHz.
● Typically, 1 master device and 1 or more slaves.
● Communications are always initiated by a master device.
● Multiple masters can co-exist on the same bus (multi-

master).
● Open-Drain: both SDA and SCL need pull-up resistors.

http://www.i2c-bus.org/
http://www.i2c-bus.org/


Introduction to the I2C Bus - Part 2

● “Clock Stretching”
○ The master controls SCL, but a slave can hold it down 

(because open drain), if it needs to adjust the speed.
○ The master must check for this scenario.
○ A slave can get stuck and jam the bus: need for reset 

lines from the master to the slave.
● Typically 7-bit addressing, but also 10 bit is supported.
● Logical protocol: actual voltage levels are not specified 

and depend on individual implementations.
Ex: 1.8V / 3.3V / 5.0V



Example of bus configuration
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Protocol (simplified)

● 2 messages: read / write
● Start / Stop bit - represented as “[“ and “]”
● Address: 7 or 10 bits
● R/W bit: R = 1 / W = 0
● Byte on the bus: (Address << 1 | R/W)
● Registers

Ex:
Write - [ address/write_bit register value(s) ]
Read - [ address/write_bit register [ address/read_bit read(s) ]



SCL - Serial CLock
SDA - Serial DAta

ACK Stop Bit

Start Bit

R/W Bit



0x20[ 0x10 0xBD ]

Example of bus write cycle.



0x20[ 0x10 [

Example of bus read cycle - Part 1



0x21 0xBD ]

Example of bus read cycle - Part 2
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Custom Slaves

Why creating a custom I2C slave?

● Desired sensor/actuator unavailable with I2C interface.
● Less unique addresses available than slaves needed.
● Desired custom functionality on the slave:

○ Semi-autonomous reactions to stimuli.
○ Filtering/preprocessing input data.
○ Power optimization: custom “sensor hub” does the housekeeping while 

the main processor is idle.
○ Realtime response to inputs.
○ [your imagination here]



How to design a custom I2C slave?
● Define requirements (see previous slide).
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves
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Key design criteria:
● Weight/Dimensions.
● Required computational power and average latency.

○ PC-like device
○ Embedded device, typically headless.

● Preferred programming language: interpreted vs compiled.
● Availability of busses/gpios for driving the slave(s):

○ GPIOs only: bitbang the protocol
○ I2C: user-space application vs kernel driver.
○ No GPIOs/I2C interfaces available: USB to I2C adapter.

Design of the I2C Master 
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● Take direct control of the bus with an ad-hoc device. 
Examples:

○ Bus Pirate (useful also for other busses)
○ USB to I2C Master adapter, also based on the FTDI FT232R chip.
○ Custom device (could be a separate project).

● Snoop the bus with a logic analyzer or a scope/advanced meter.
Examples:

○ sigrok/pulseview with compatible logic analyzer
○ 2-channels standalone scope/meter

● Use slave-specific In Circuit Debugger/In Circuit Emulator:
Example:

○ AVR Dragon for AVR chips (Arduino UNO, Nano, Mini, MiniPro)

Debugging: Divide and Conquer.



Bus Pirate
● Primarily for development purposes.
● Can both sniff the bus and drive it.
● Console interface over serial (ttyACM) port, 

including macros, or programmatic access for 
several programming languages.

● Built-in pullup resistors and voltage sources
(5V / 3.3V)

● Supports many other protocols.

http://dangerousprototypes.com/docs/Bus_Pirate

https://en.wikipedia.org/wiki/Bus_Pirate

http://dangerousprototypes.com/docs/Bus_Pirate
http://dangerousprototypes.com/docs/Bus_Pirate
https://en.wikipedia.org/wiki/Bus_Pirate
https://en.wikipedia.org/wiki/Bus_Pirate


USB to I2C adapter
● Small footprint.
● Suitable for permanent installations.
● No need for special connections on the host: it 

can be used to interface with a typical PC.
● Variant available that is also SPI-capable.
● No console interface, only serial binary protocol.
● Requires protocol wrapper.

http://www.robot-electronics.co.uk/htm/usb_i2c_tech.htm



sigrok/pulseview ● De-facto standard for PC-driven measurements 
on linux (but available on other OSes too).

● Support for vast range of logic analyzers, scopes 
and meters.

● Various protocol decoders, including I2C.
● Useful for visualizing the logical signals and 

debugging protocol errors.
● Even very low end, inexpensive HW can provide 

a whole new dimension to debugging.

https://sigrok.org

https://sigrok.org/wiki/PulseView

https://sigrok.org/wiki/Supported_hardware

https://sigrok.org
https://sigrok.org
https://sigrok.org/wiki/PulseView
https://sigrok.org/wiki/PulseView
https://sigrok.org/wiki/Supported_hardware
https://sigrok.org/wiki/Supported_hardware
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Bus configuration
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How to design a custom I2C slave?
● Define requirements.
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves



Example:
Steering a
4WD Drone

The I2C slave:

● Controls the amount of 
torque applied to each 
wheel.

● Controls the direction each 
wheel spins.

● Measures  the rotation speed 
of each wheel through an 
optical encoder (Odometer).

● Exposes the parameters 
above to the I2C Master.
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How to design a custom I2C slave?
● Define requirements (see previous slide).
● Choose microcontroller or microprocessor.
● Choose Scheduler or Operating System (if any).
● Define communication sub-protocol:

○ Define parameters and commands to be exchanged.
○ Organize them into “registers” and choose a free address.

Custom Slaves



Selecting the Slave:
Arduino Mini Pro

(AVR328P)
● Enough pins/functions to provide for each wheel:

○ 1 PWM output with independent 
configuration of the duty-cycle.

○ 2 GPIOs for selecting:
Forward, Reverse, Idle, Lock

○ 1 GPIO for registering odometer input as IRQ.
● I2C HW block for interrupt-driven i2c exchanges.
● Dedicated pins for SPI-based programming.
● Small footprint.
● Low Cost.
● The clone represented in the picture has layout 

optimized for DIL socket mounting.

https://www.arduino.cc/en/Main/ArduinoBoardProMini



Slave-specific ICD:
AVR Dragon ● Supports various programming modes, included 

SPI programming, through AVRDude.
● Doesn’t interfere with normal AVR operations, so 

it can be left plugged into the system.
● After enabling debugWire interface, it allows 

configuring HW/SW breakpoints, by a dedicated 
backend for gdb/ddd.

http://www.atmel.com/webdoc/avrdragon/

http://www.nongnu.org/avrdude/

http://www.larsen-b.com/Article/315.html

http://www.atmel.com/webdoc/avrdragon/
http://www.atmel.com/webdoc/avrdragon/
http://www.nongnu.org/avrdude/
http://www.nongnu.org/avrdude/
http://www.larsen-b.com/Article/315.html
http://www.larsen-b.com/Article/315.html
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Selecting the OS:
ChibiOS ● RTOS: preemption, tasks, semaphores, dynamic 

system tic, etc.
● Small footprint: link only used code/data.
● Distinction between RTOS and BSP through HAL.
● GPLv3 for non-commercial use.
● Actively developed, but already mature.

However it had limited BSP support for AVR, lack of:

● interrupts driver for AVR GPIOs (added).
● I2C support for AVR slave mode (custom).

http://www.chibios.org/dokuwiki/doku.php

https://github.com/igor-stoppa/ChibiOS/tree/car/

http://www.chibios.org/dokuwiki/doku.php
http://www.chibios.org/dokuwiki/doku.php
https://github.com/igor-stoppa/ChibiOS/tree/car/
https://github.com/igor-stoppa/ChibiOS/tree/car/
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For each wheel:

● Duty Cycle of the PWM signal used to drive it - 1 byte.
0xFF = max torque / 0x00 = no torque.

● Direction of rotation - 1 byte.
0x00 = idle / 0x01 = reverse / 0x02 = forward / 0x03 = locked

● Average period in between slots of the optical encoder - 2 bytes. 
Writing anything resets the measurement.

Communication Parameters - 1



● Parameter Index - 1 nibble:
○ 0 = Duty Cycle
○ 1 = Direction
○ 2 = Average Period

● Wheel indexes - 1 nibble:
○ 0 = Left Rear
○ 1 = Right Rear
○ 2 = Right Front
○ 3 = Left Front
○ 4 = All

Communication Parameters - 2



How to design a custom I2C slave?
● Define requirements (see previous slide).
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Register format:   0xαβ
● α = Parameter Index
● β = Wheel Index

Address: 0x10

Bus Pirate format:
[ = start bit
] = end bit
r = read byte
address times 2, for R/W bit

Sub-Protocol: registers

Example - in Bus Pirate Format:
[ i2c_addr reg_addr=(parm,wheel) reg_value]

[0x20 0x20 0x02]  Left Rear Forward

[0x20 0x21 0x01]  Right Rear Backward

[0x20 0x22 0x01]  Right Front Backward

[0x20 0x23 0x02]  Left Front Forward

[0x20 0x14 0xFF]  Wheels set to max torque

The car spins clockwise.



Key design criteria:
● Weight/Dimensions: must fit on the drone.
● Required computational power and average latency

○ Embedded device, it can provide enough computational power.
● Availability of busses/gpios for driving the slave(s):

○ Native I2C available on most candidates
○ user-space application is sufficient:

no requirement for extremely low latency, might change later on
● Preferred programming language: interpreted vs compiled.

Design of the I2C Master 



● x86-64
● Built-in connectivity:

○ Wifi
○ Bluetooth
○ OTG - Ethernet over USB
○ Serial Console

● I2C available through add-on 
breakout board, normally @3.
3V, here hacked @5V

http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
https://www.sparkfun.com/products/13034

Master: 
Intel Edison

http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
https://www.sparkfun.com/products/13034
https://www.sparkfun.com/products/13034


5V Mod for Sparkfun I2C Breakout

Can accept 5V

Removed Pull-UP resistors

Disconnected
internal 
voltage
regulators

Purpose:
make the I2C breakout
open drain, 5V compatible



Official Edison distro (based on Poky/OE) https:
//software.intel.com/en-us/iot/hardware/edison/downloads

Ubilinux (Debian port)
http://www.emutexlabs.com/ubilinux

Ostro Project using libmraa
https://download.ostroproject.org/builds/ostro-os/latest/images/edison/
http://iotdk.intel.com/docs/master/mraa/

OS: Linux Flavors 

https://download.ostroproject.org/builds/ostro-os/latest/images/edison/
https://download.ostroproject.org/builds/ostro-os/latest/images/edison/


From Bus Pirate format to Python

Example - Python with libmraa:
#!/usr/bin/python

import mraa

x = mraa.I2c(1) # Select the correct I2C bus

x.address(0x10) # The library does the shift

x.writeReg(0x20, 0x02) # Left Rear Forward

x.writeReg(0x21, 0x01) # Right Rear Backward

x.writeReg(0x22, 0x01) # Right Front Backward

x.writeReg(0x23, 0x02) # Left Front Forward

x.writeReg(0x14, 0xFF) # Wheels: max torque

The car spins clockwise.

Example - in Bus Pirate Format:
[ i2c_addr reg_addr=(parm,wheel) reg_value]

[0x20 0x20 0x02]  Left Rear Forward

[0x20 0x21 0x01]  Right Rear Backward

[0x20 0x22 0x01]  Right Front Backward

[0x20 0x23 0x02]  Left Front Forward

[0x20 0x14 0xFF]  Wheels: max torque

The car spins clockwise.

Note:

Bus Pirate simply dumps data on the bus, so 
the address 0x10 must be shifted left 
because of the R/W bit.



Alternative Master:
BeagleBone Black

● Cortex A8
● Built-in connectivity:

○ Ethernet
○ Ethernet-over-USB
○ Serial Console

● I2C available through 
standard connector, open 
drain, compatible with @3.3V

● C userspace program using 
libi2c.

https://beagleboard.org/black
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● Add multi-master support
○ The current implementation is efficient wrt Slave time because it is 

event-driven and there is action happens only as result of an IRQ firing 
(no polling).

○ The Master, however, is polling the slave and polling is never a 
particularly good idea:

■ poll too often and it will overload the system
■ poll too seldom and important events might escape the window-of-opportunity

● Add arbitrary capability to R/W memory areas over I2C
○ live debugging of the I2C Slave.
○ Useful for memory mapped peripherals.
○ Could be used in conjunction with the memory map & linker scripting.

Ideas for improvement
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Questions?



Thank you!


