
Driving Security Process in your
Open Source Project
Nicko van Someren
The Linux Foundation

Open Source Software has had it’s fair
share of major security issues

Security Is Hard For Open or Closed
Source - These Are Complex Systems

FOSS Security Is Different Though

FOSS is not more or less secure, but it is different

•  Typically there are many more people contributing
•  Sometimes (often?) there is a culture of “code is

more important than specification”
•  Processes are often more ad hoc
•  There may be less market pressure to put security

first

Linus’s Law: “Given enough eyeballs, all
bugs are shallow.”

But what if you don’t have enough eyeballs?

Core Infrastructure Initiative Mission

▪  The CII aims to substantially improve security outcomes
in the FOSS projects that underpin the Internet

▪  The CII funds work in security engineering, security
architecture, tooling, testing and training on key FOSS
projects, as well as supporting general development on
security-specific projects (such as crypto libraries)

▪  The CII is a project run by the Linux Foundation

CII is a non-profit, funded by membership
donations, largely from the tech industry

Multiple pillars to the CII’s approach
•  Find where the risky projects are
•  Help them fix their own code
•  Support the development of better OSS security

tools
•  Teach developers to use security tools
•  Encourage developers to make security a

priority within their projects

What can we do to improve the security of
Open Source Software?

We can do all the same things as we do
when building commercial software

The big difference is that we have to do it
collaboratively, without having a top-down
mandate demanding it

Security is a process, not a product

▪  Think about security early. Think about
security often.
▪  This requires buy-in from the whole project community

Fostering a culture of security within your open source
project is the single most important thing that you can do
to improve your security outcomes

▪  Security needs to be given equal weight with scalability,
performance, usability and all the other design factors that matter
to your users

Applying “Best Practice” to FOSS
▪  There are a great many widely known and widely
used techniques that have been shown to improve
security outcomes
▪  The CII Best Practice Badge program aims to get
projects to actually use them!
▪  The Best Practice Badge web application is an open
source project
… as is the set of criteria that it applies

Security design

▪ Build a threat model and keep it up to date
▪  Threat modelling doesn’t need to be hard or complex
▪  Tool: Elevation of Privilege Threat Modelling Card Game

▪ Don’t use weak crypto
▪  And definitely don’t try to design your own crypto!

▪ Know your dependencies
▪  Fix known broken things

Change control

▪  Tracking who proposed changes, who
reviewed those changes and who released
them is critical to security.
▪  This is often more complex in collaborative OS projects
▪  Failures with this are how Heartbleed made it into OpenSSL

▪ As soon as your project has two or more
people coding you need a policy for how code
will get reviewed

one

Change control

▪ Use a version-controlled source repository
FOSS Tool: git, Mercurial, bazaar

▪ Make code publicly visible between major
releases
▪  Public code review before final release is valuable

▪ Change logs are a must
▪  If other people rely on your code, you can break their security
by changing things in your code

Quality testing

Not all bugs represent vulnerabilities

… but all vulnerabilities are bugs, and…

It’s often very hard to tell the difference (at
least until someone publishes an exploit!)

Quality testing
▪  Writing comprehensive tests is far less fun than
writing new code to solve new and interesting problems
▪  But it’s a hell of a lot more fun than dealing with bugs
after they get released
▪  Measure your test coverage and require collaborators
to write tests for all contributed code
FOSS Tools: gcov (C/C++), CodeCover (Java),
CodeCoverage (Python), and many more…

Security analysis tools
▪  Fancy commercial static analysis tools are expensive
… Switching all of your compiler warnings on is not!

▪  Use linters, code complexity checkers, fuzzers and other
analysis tools where you can; they all can help
▪  Some commercial tools are free for open source projects
▪  The earlier in the project you start using these the less you
will have to deal with “low signal to noise ratio”

FOSS Tools: SonarCube, FramaC, AFL & many more

Bug reporting: Closing the SDL loop

▪ Bugs happen; you need a process for dealing with
them
▪ Users need a way to report security vulnerabilities that
doesn’t broadcast them to the whole world!
▪ Take reports of security vulnerabilities seriously
▪  Just because you can’t work out how to exploit a bug doesn’t mean
that it can’t be exploited

Tools: Bugzilla, Trac, GitHub Issues

None of this is rocket science
▪  I suspect that most of what I have just outlined is not
new to you
▪  So why aren’t you doing it all? J

▪  The CII Best Practice Badge is ‘just a checklist’
▪  To date we’ve had over 800 projects start the process and only 10%
have passed

▪  Checklists don’t teach you new things to do, they
remind you to do things that you should be doing
https://bestpractices.coreinfrastructure.org

Can the CII directly
support my project?

Maybe..

▪ The CII can provide direct support to your
OSS project if it meets certain criteria
▪  It needs to meet at least one of these:
▪  Is your project “Core Infrastructure”?
▪ Does your project aim to improve the security of
other OSS projects?
▪ Are you working to improve the security processes
in OSS projects?

Getting support from the CII

▪  If you are working on a project that can
impact the security of open source and you
would like help then please apply!

https://applications.coreinfrastructure.org

Conclusions
▪ Projects must think about security early & often and they
must be willing to prioritise it as highly as other features
▪ A strong security process can help to avoid security bugs
from creeping in in the first place and helps make it easier
and safer to deal with them if they do happen
▪ Most of the ways that we can make open source software
more secure are common industry “best practices”. It is
simply a matter of choosing to adopt them.

Thank you.
https://www.coreinfrastructure.org

