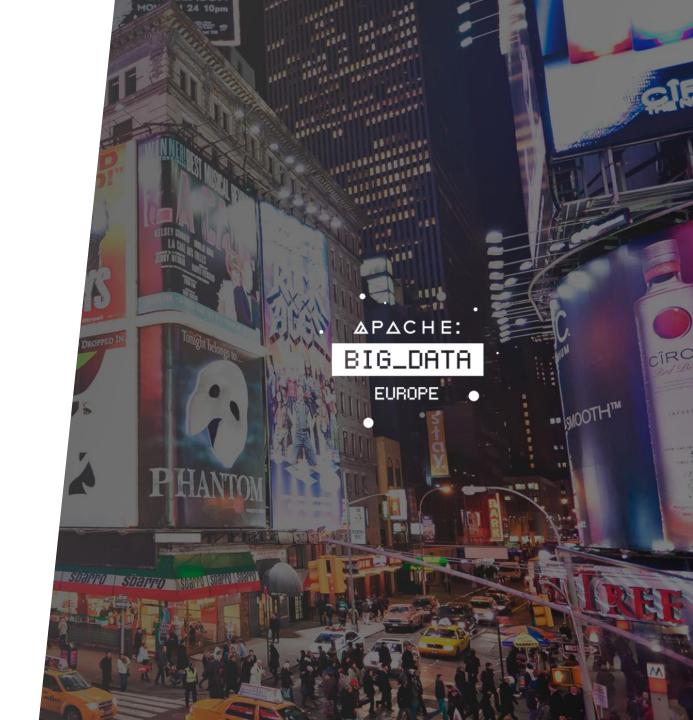


DISTRIBUTED LOGISTIC MODEL TREES

16 NOV 2016 @ APACHE BIG DATA EUROPE

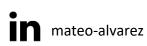
Distributed Logistic Model Trees, Stratio Intelligence

Mateo Álvarez and Antonio Soriano



MATEO ÁLVAREZ

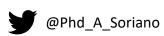
Aerospace Engineer, MSc in
Propulsion Systems (UPM), Master
in Data Science (URJC).
Working as data scientist and Big
Data developer at Stratio Big Data in
the data science department



ANTONIO SORIANO

Ph.D. in Telecommunications, MSc in Electronic Systems Engineering and Telecommunication Technologies, Systems and Networks (UPV), and MSc "Big Data Expert" (UTAD).

Working as data scientist and Big Data developer at at Stratio Big Data in the data science department



INTERPRETABLE ALGORITHMS

Why using interpretable algorithms instead of "black boxes"

Logistic Regression

Decision Trees

Variance-Bias tradeoff

3

AUTOMATIC BENCHMARKING FRAMEWORK

Metrics

Demo

DISTRIBUTED LOGISTIC MODEL TREES

Logistic Model Trees

Distributed implementation

Cost function & configuration params

Demo

4

BENCHMARK RESULTS

INTERPRETABLE ALGORITHMS

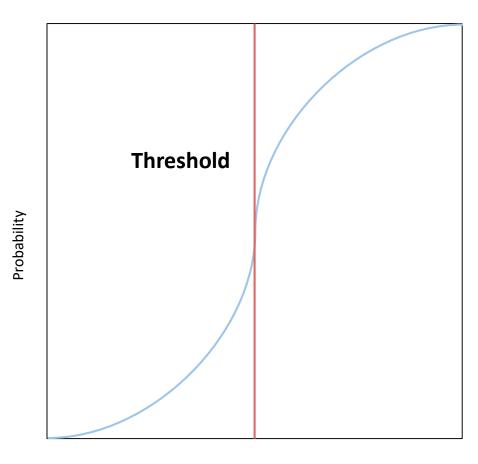
- Why use interpretable algorithms instead of "black boxes"
- Logistic Regression
- Decision Trees
- Variance-Bias tradeoff

Medical Studies

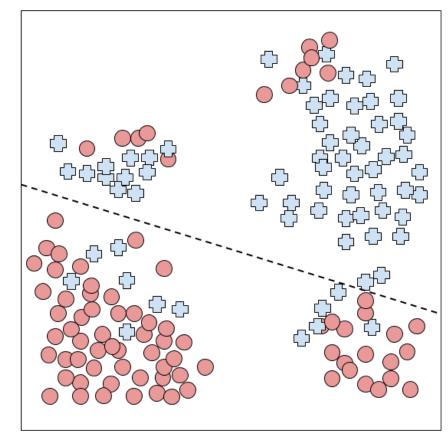
Power management

Financial environment

Criminal activity

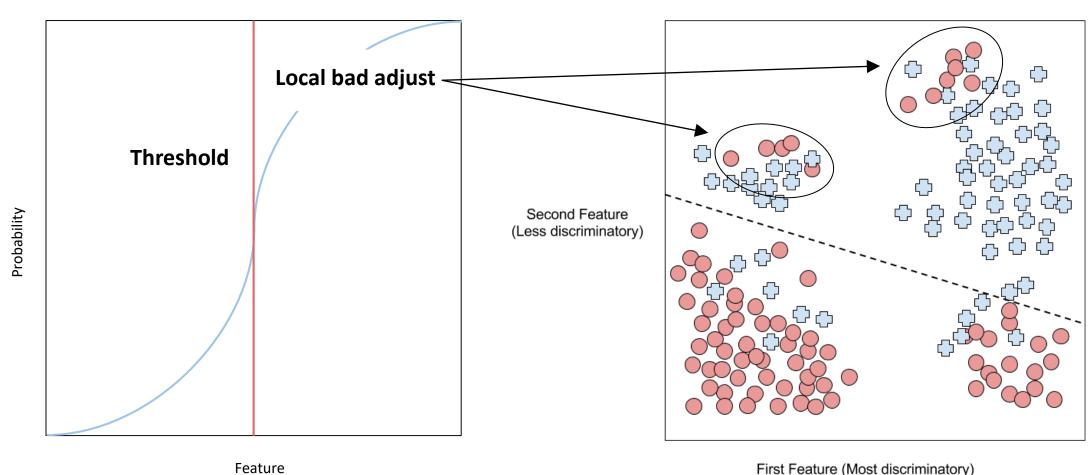


Second Feature (Less discriminatory)

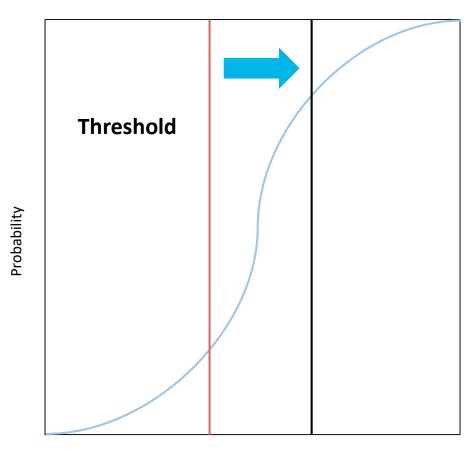


Feature

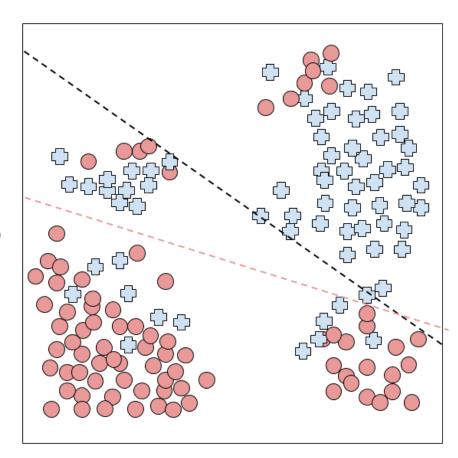
First Feature (Most discriminatory)



First Feature (Most discriminatory)

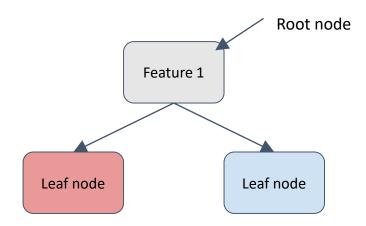


Second Feature (Less discriminatory)

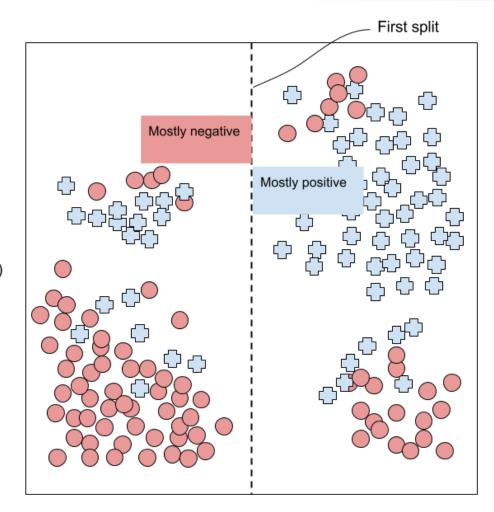


Feature

First Feature (Most discriminatory)

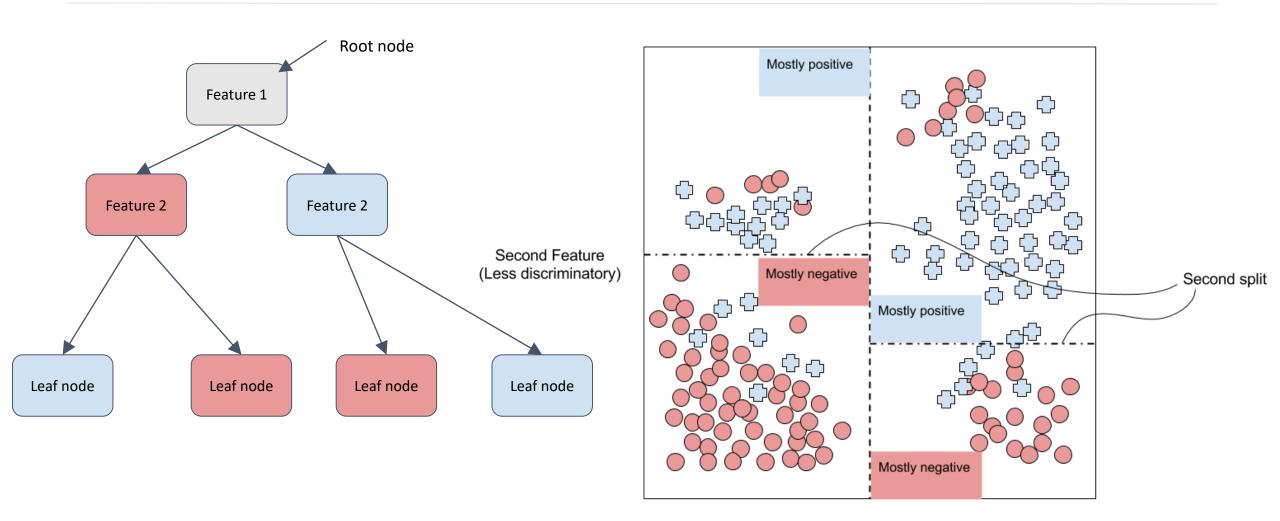


Second Feature (Less discriminatory)



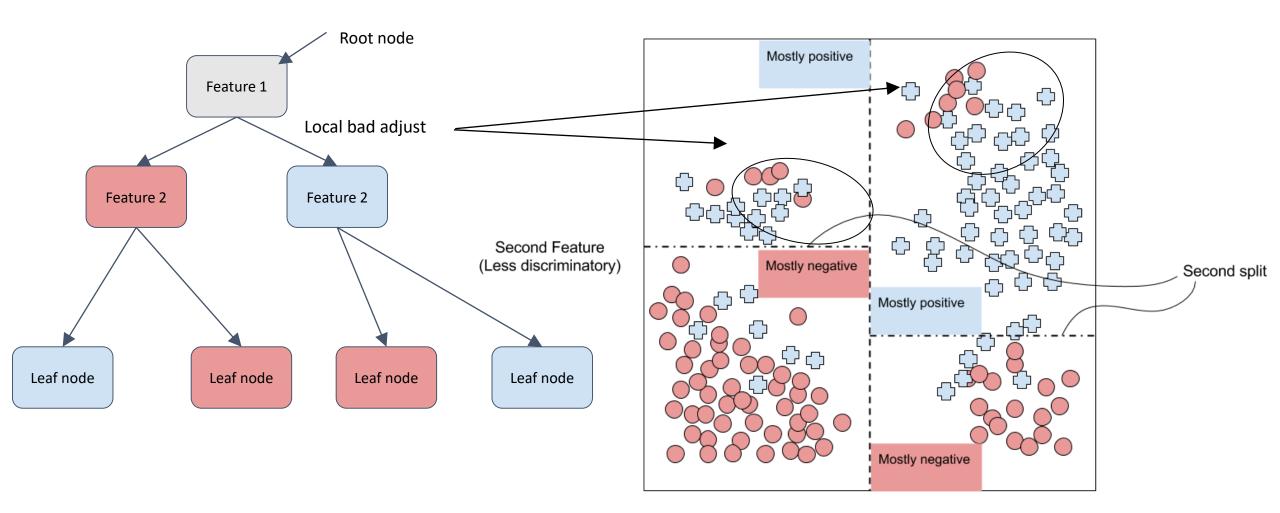
First Feature (Most discriminatory)

DECISION TREES

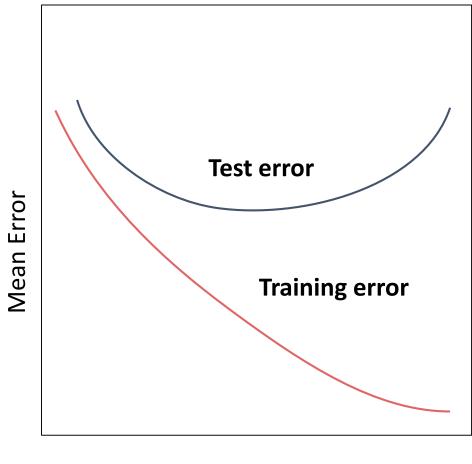


First Feature (Most discriminatory)

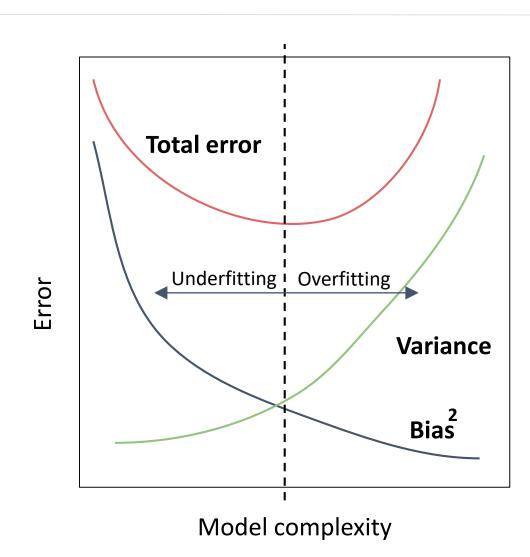
DECISION TREES



First Feature (Most discriminatory)



Model complexity

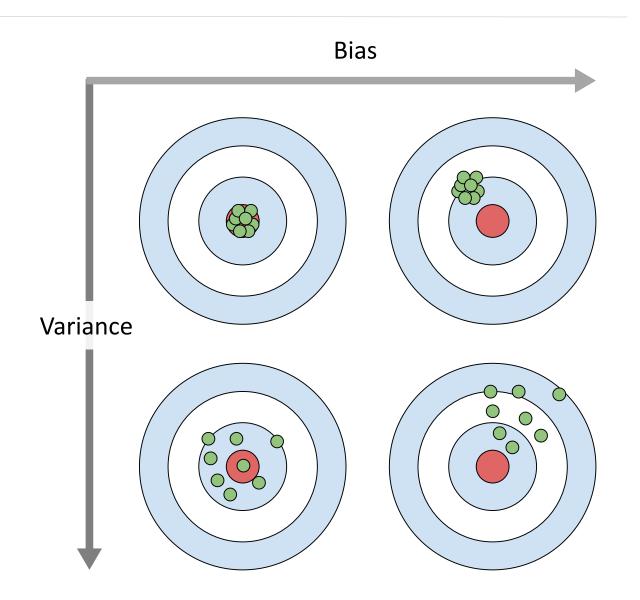


$$\mathrm{E}\!\left[\left(y-\hat{f}\left(x
ight)
ight)^{2}
ight]=\mathrm{Bias}\!\left[\hat{f}\left(x
ight)
ight]^{2}+\mathrm{Var}\!\left[\hat{f}\left(x
ight)
ight]+\sigma^{2}$$

Where:

$$\operatorname{Bias}\left[\hat{f}\left(x\right)\right] = \operatorname{E}\left[\hat{f}\left(x\right) - f(x)\right]$$

$$\mathrm{Var}ig[\hat{f}\left(x
ight)ig] = \mathrm{E}[\hat{f}\left(x
ight)^2] - \mathrm{E}[\hat{f}\left(x
ight)]^2$$



Missing important variables for the problem

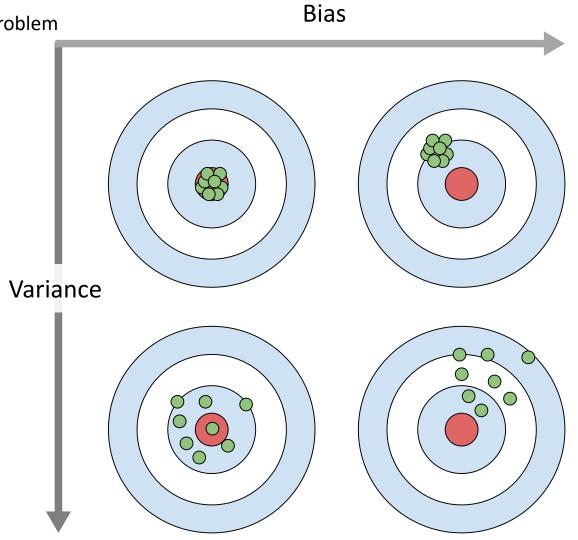
to make the predictions

$$\mathrm{E}ig[ig(y-\hat{f}\left(x
ight)ig)^2ig] = \widehat{\mathrm{Bias}ig[\hat{f}\left(x
ight)ig]^2} + \mathrm{Var}ig[\hat{f}\left(x
ight)ig] + \sigma^2$$

Where:

$$\operatorname{Bias}\left[\hat{f}\left(x\right)\right] = \operatorname{E}\left[\hat{f}\left(x\right) - f(x)\right]$$

$$\mathrm{Var}ig[\hat{f}\left(x
ight)ig] = \mathrm{E}[\hat{f}\left(x
ight)^2] - \mathrm{E}[\hat{f}\left(x
ight)]^2$$



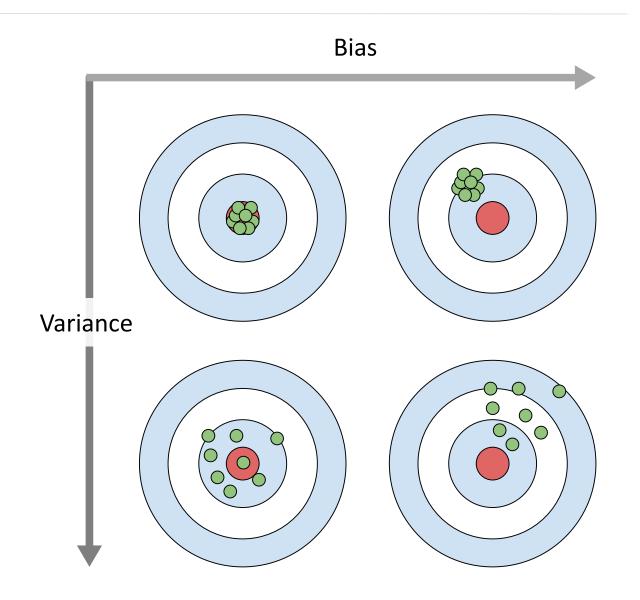
Overfitting to the sample/training data

$$\mathrm{E}ig[ig(y-\hat{f}\left(x
ight)ig)^2ig]=\mathrm{Bias}ig[\hat{f}\left(x
ight)ig]^2+\mathrm{Var}ig[\hat{f}\left(x
ight)ig]+\sigma^2$$

Where:

$$\operatorname{Bias}\left[\hat{f}\left(x\right)\right] = \operatorname{E}\left[\hat{f}\left(x\right) - f(x)\right]$$

$$\mathrm{Var}ig[\hat{f}\left(x
ight)ig] = \mathrm{E}[\hat{f}\left(x
ight)^2] - \mathrm{E}[\hat{f}\left(x
ight)]^2$$



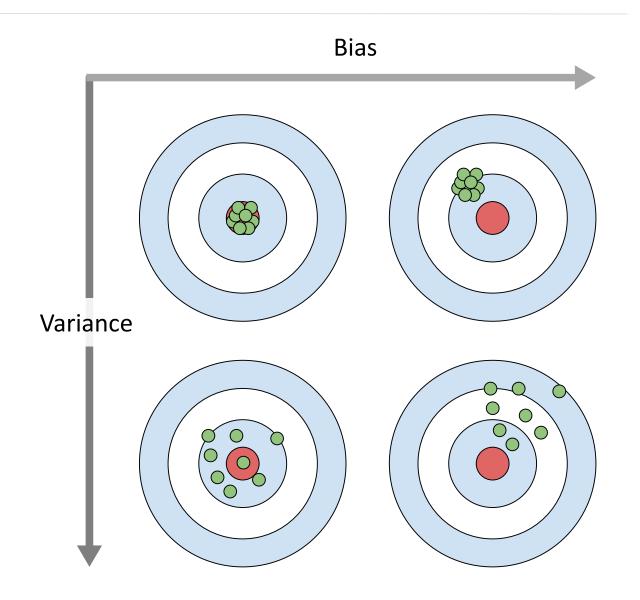
Irreducible error on prediction

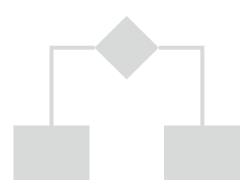
$$\mathrm{E}ig[ig(y-\hat{f}\left(x
ight)ig)^2ig]=\mathrm{Bias}ig[\hat{f}\left(x
ight)ig]^2+\mathrm{Var}ig[\hat{f}\left(x
ight)ig]+\sigma^2$$

Where:

$$\operatorname{Bias}\left[\hat{f}\left(x\right)\right] = \operatorname{E}\left[\hat{f}\left(x\right) - f(x)\right]$$

$$\mathrm{Var}ig[\hat{f}\left(x
ight)ig] = \mathrm{E}[\hat{f}\left(x
ight)^2] - \mathrm{E}[\hat{f}\left(x
ight)]^2$$

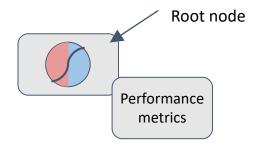




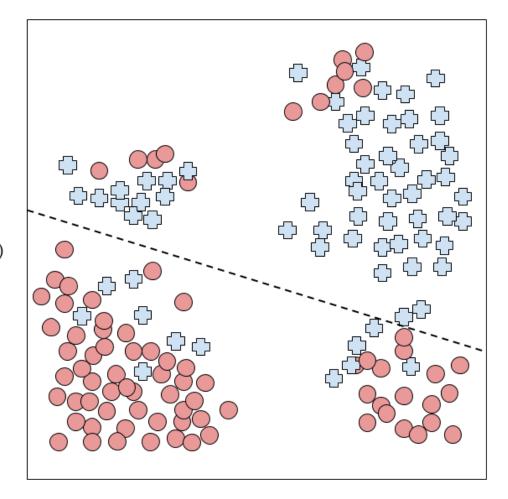
DISTRIBUTED LOGISTIC MODEL TREES

- Logistic Model Trees
- Distributed implementation
- Cost function & configuration parametres
- Demo

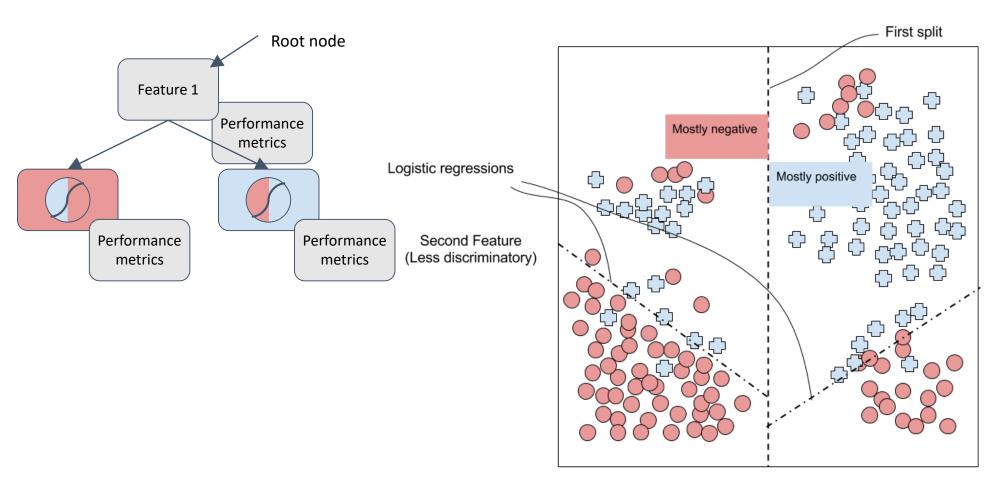




Second Feature (Less discriminatory)

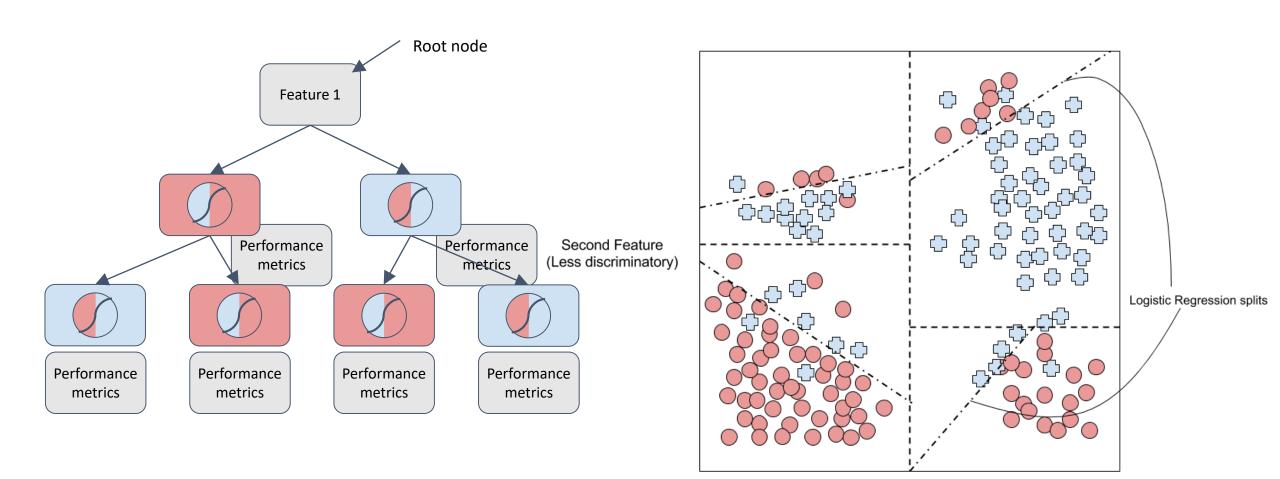


First Feature (Most discriminatory)



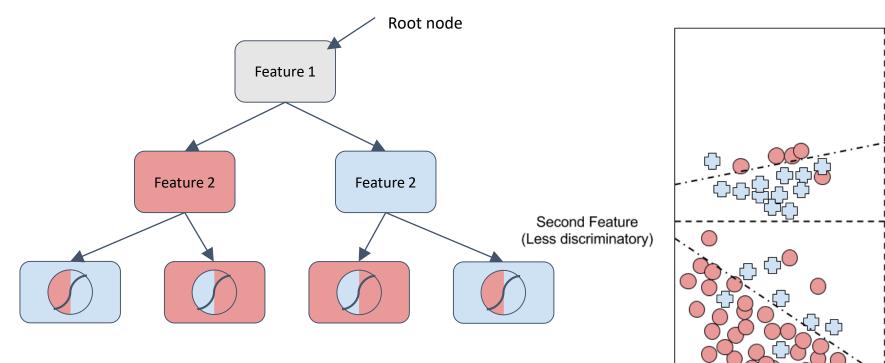
First Feature (Most discriminatory)

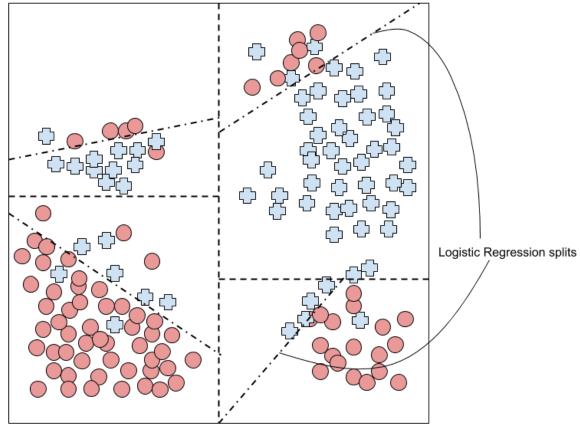
LOGISTIC MODEL TREES



First Feature (Most discriminatory)

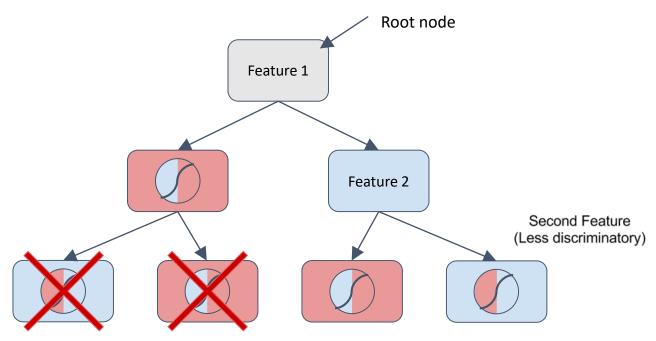
LOGISTIC MODEL TREES

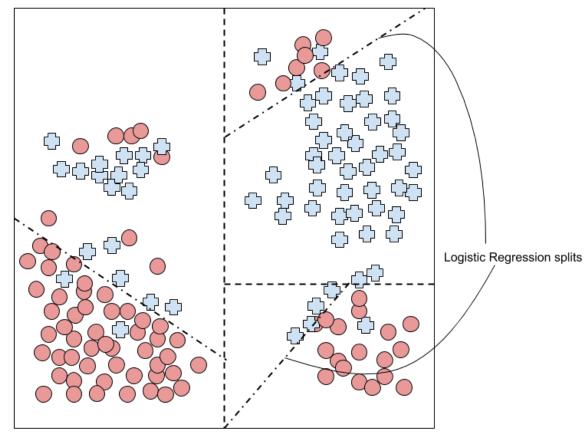




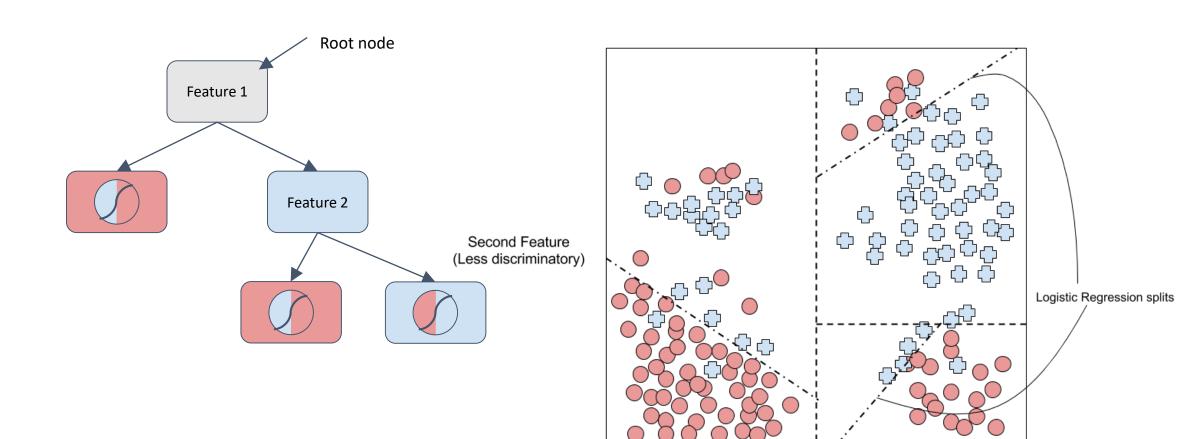
First Feature (Most discriminatory)

LOGISTIC MODEL TREES



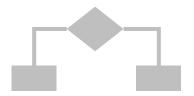


First Feature (Most discriminatory)



First Feature (Most discriminatory)

DISTRIBUTED IMPLEMENTATION



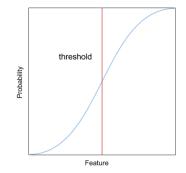
Spark's Decision Tree (distributed implementation of random forests)

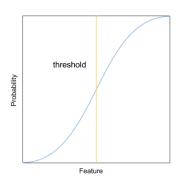
Spark's Logistic Regression / weka's Logistic Regression on the nodes

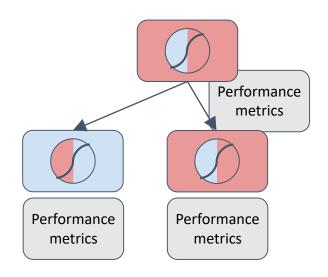
LMT Cost function to fix the logistic regression threshold

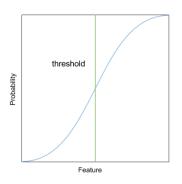
- AccuracyCostFunction
- ConfusionMatrix
- PrecisionCostFunction
- PrecisionRecallCostFunction
- RocCostFunction

The same cost function for pruning criteria









ADVANTAGES OF THIS IMPLEMENTATION

Big datasets

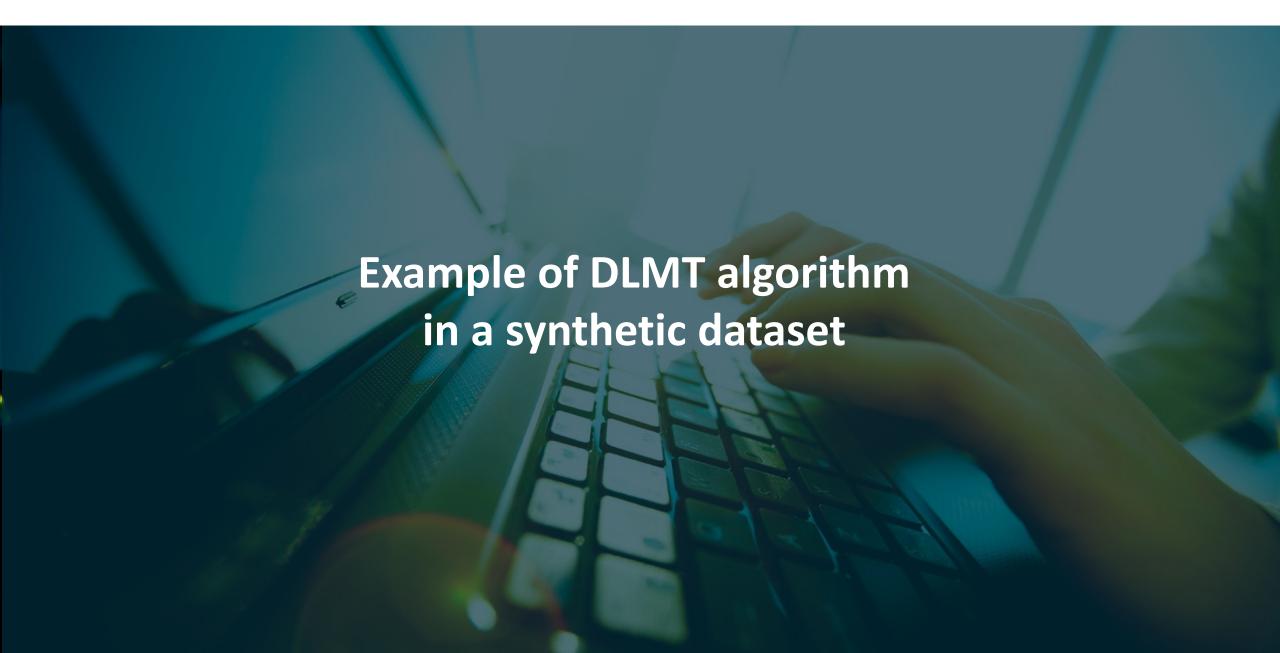
Power of spark to distribute building the tree and logistic regressions

Medium datasets

Distributed tree growth and weka's logistic regression

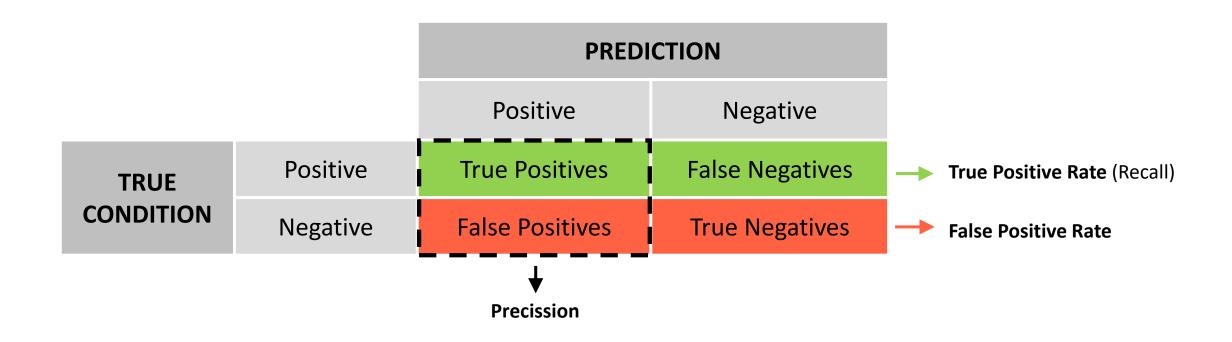
Small datasets

Although it can be slow to distribute the data for the decision tree, cost functions can be still used and specific optimization for particular cases



AUTOMATED BENCHMARKING FRAMEWORK

- Metrics
- Demo



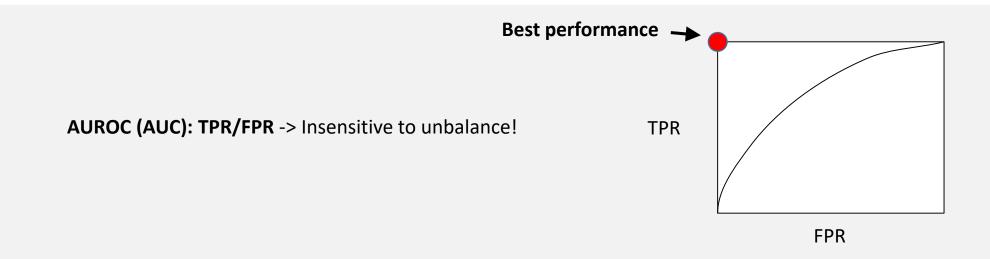
TPR = TP/(TP+FN) Insensitive to unbalance

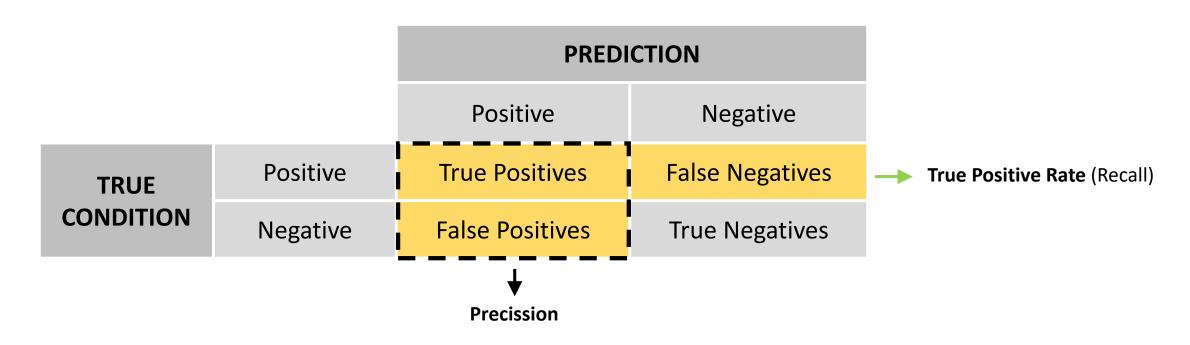
FPR = FP/(FP+TN) Insensitive to unbalance

Precision = TP/(TP+FP) Sensitive to unbalance

Accuracy = (TP+TN)/(TP+TN+FP+FN) Sensitive to unbalance

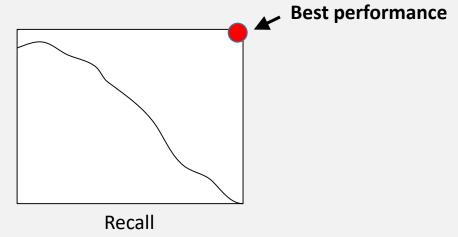
		PREDICTION			
			Positive	Negative	
	TRUE CONDITION	Positive	True Positives	False Negatives	→ True Positive Rate (Recall)
		Negative	False Positives	True Negatives	False Positive Rate

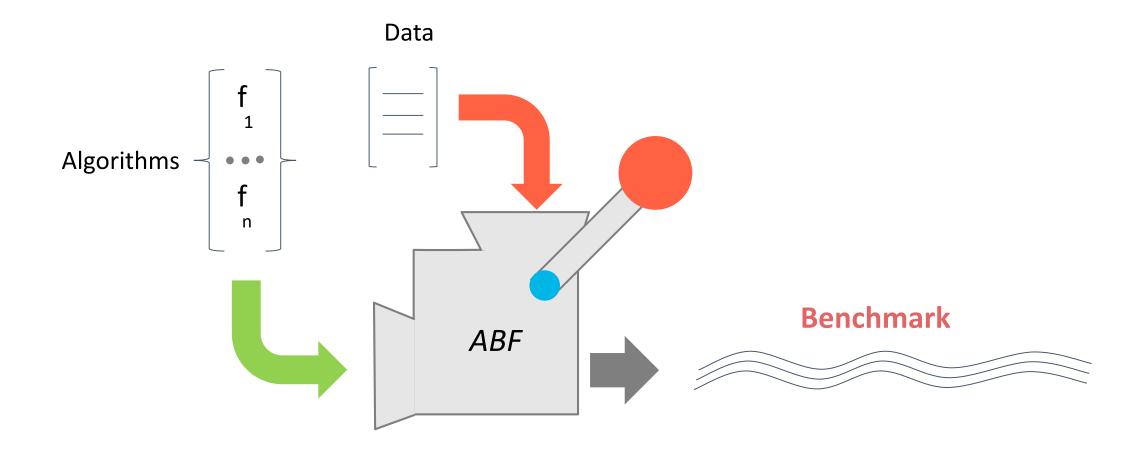


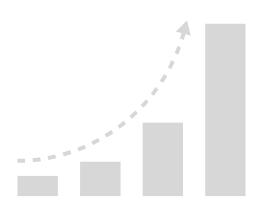


AUPRC: Precision/TPR -> Sensitive to unbalance!

Precision







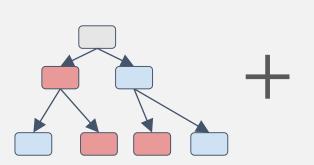
BENCHMARKING RESULTS

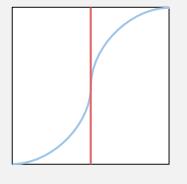
1

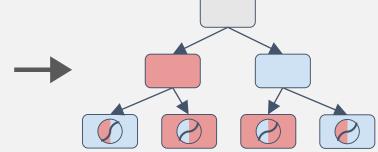
VS

Explainability

2

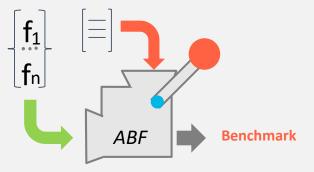






Performance Metrics:
AUROC, AUPRC, ACCURACY

Automatic
Benchmarking
Framework



THANK YOU

UNITED STATES

EUROPE

Tel: (+1) 408 5998830

Tel: (+34) 91 828 64 73

contact@stratio.com

www.stratio.com

@StratioBD

