
v1.07

Daniel Sârbe
Development Manager, BigData and Cloud Machine Translation @ SDL
Co-founder of BigData/DataScience Meetup Cluj, Romania

How we built a highly scalable Machine Learning
platform using Apache Mesos

@danielsarbeOctober 2017
MesosCon Europe

Agenda

Some Machine Translation context

Why we needed a new platform?

Architecture overview of our current SaaS solution

New platform – using micro-services

Lesson Learned

Demo – Scaling micro-services to handle traffic increase

Q&A

2

3

4

5

1

6

7

@danielsarbe

• Software development background (13+ years)

• Passionate about people and technology

• Interest in anything that is related to Scalability, BigData, Machine Learning

• Currently leading the BigData and Cloud Machine Translation group at SDL
Cluj, Romania

• Co-founder of BigData/DataScience Meetup Cluj

– 1200+ members

– 25+ events organized
 meetups with more 100+ participants

 workshops with 30 people

Machine Translation quality improvements

2
0

0
0

2
0

0
5 2
0

1
5

Technological
Progress

Machine Translation quality improvements

2
0

0
0

2
0

0
5 2
0

1
5

In
d

u
st

ry
V

er
ti

ca
l

C
u

st
o

m
Tr

ai
n

ed

Technological
Progress

Customization

G
e

n
e

ri
c

Machine Translation quality improvements

2
0

0
0

2
0

0
5 2
0

1
5

In
d

u
st

ry
V

er
ti

ca
l

C
u

st
o

m
Tr

ai
n

ed

Technological
Progress Customization

G
e

n
e

ri
c

On average, customized engines handled industry terminology 24% better

than standard genetic MT

Adaptive Machine Translation idea

Machine learns during

the statistical training

process

Machine does not learn

or improve during the

translation process

Machine learns during

the statistical training

process

Machine learns from

user feedback during

the translation process

Machine translation Machine translation +

AdaptiveMT

Learning from Post-Edits

Source

MT Output

Post-Edit

Update

operation

Update Example - EngFra

• An update of one of the statistical MT models, the translation
model

No further requirements are needed

Aucune exigence supplémentaire n’est nécessaire

Pas d'autres exigences sont requisesMT

PE

Source

Update Example: Translation Model Adaptation

• Statistical features help choose good rules, and decide when to
use them

No further requirements are needed

Aucune exigence supplémentaire n’est nécessaire

Bad New Translations

are -> n’est

requirements -> exigence

no -> aucune

Pas d'autres exigences sont requises

Good New Translations

needed -> requises nécessaire

further -> autres supplémentaire

no further requirements are -> aucune

exigence supplémentaire n’est

AdaptiveMT progressive impact

-400

-350

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400 500 600 700 800

To PE 300 segments with

AdaptiveMT, we need 250 fewer

edits than without AdaptiveMT

M
T

A
M

T
7%

Segments

Edits

Second use-case – Neural MT

• Rule-based

– define and build the model by hand

• Traditional SMT

– define the model by hand then statistically learn it from data

• Neural MT

– design architecture to automatically discover, define, and
learn the models from data

Neural MT

• Uses a deep learning architecture capable of learning the
meaning of the text

– fluent and naturally sounding translation output

• Neural MT shows significant translation quality
improvement over SMT

– captures both local and global dependencies and can handle
longrange word reordering

– e.g. we observe an impressive 30% improvement on English-
German

Neural MT in the Cloud

• To accommodate NMT in the Cloud we need:

– new hardware: GPUs

– flexible infrastructure (new&old engines)

– break the old implementation(independent services)

– new modern API (for new clients onboarding)

How can we do this?

What we had before?

Our Legacy SaaS solution

Mature, Iteratively-
developed platform

>15 billion words
translated in average

month
>200 million translation

request/month

No P1/P2 Bugs in
last 24 months

Availability: 99.9x

The only large-scale,
commercial-grade MT

solution other than
Google and Microsoft

Translation engines are
not modular and is
difficult to add new

functionality

Redundant flows and
services based on

outdated requirements

Scaling up-down
requires manual
intervention and

allocation of new VMs

What we had before?

Overall, monolithic
design that is hard to

adopt for new use-cases

A new platform

What do we want to achieve? – Key Concepts

• Scalability

• Latency

• Independent (micro-)services

• Elasticity (auto-scaling)

• Fault-tolerance & robustness

• Infrastructure automation

• Reliable monitoring and alerts

Architecture evolution

• eBay

• 5th generation today

• Monolithic Perl  Monolithic C++  Java  microservices

• Twitter

• 3rd generation today

• Monolithic Rails  JS / Rails / Scala  microservices

• Amazon

• Nth generation today

• Monolithic C++  Java / Scala  microservices

• SDL MT

• 3rd generation today

• Monolithic Rails -> Monolithic Java -> microservices

ELK stack Log aggregation, search

server(indexing &

querying logs)

Monitoring and

alerts

Grafana Beautiful metric & analytic

dashboards

OpenTSDB Real-time metrics

Zabbix Monitoring solution

Our Technology Stack – New microservices platform

Ansible IT automation Infrastructure

automation,

ElasticityAWS Cloud Computing Services

Mesos Cluster manager Scaling

Marathon

HBase NoSQL, column-oriented db

Hadoop Storage

Kafka Messaging system Latency,

Fault-

toleranceZookeeper Centralized coordination service

Protocol Buffers Serializing structured data –

developed by Google
Docker Containerization platform Microservices

DropWizard

SpringBoot

REST application bootstrap

framework

Java8 Programming language

Lessons Learned

“No regrets in life.
Just lesson learned.”

1. Cost efficient

• Dev/QA/Clone clusters – ~40% cost
– issues found only in aws-qa

– prod clone has the same IPs/confs as prod

• AWS
– periodical cleanup

– email alerts on no of instances running

– r3.4xlarge -> r4.4xlarge ($1.33/h -> $1.06/h -no ephemeral 320SSD)

– ElasticBlockStore(EBS) vs ElasticFileSystem(EFS)

– reserved instances

2. Security

• ssh via a single aws bastion machine

• gpg encryption of confs

– no clear passwords in git

– restrict access to specific envs

• secure Marathon/Kibana/HAProxyUI

• AWS termination protection

3. Platform high availability

• Infrastructure allocation
– +1 node/cluster

– one instance decommissioned/stopped (AWS EC2/human error)

• Microservices

– 2 instances/micoservice

– unique constraints should be set

• Test with 5x-10x more traffic

• Early monitoring on all fronts
– infrastructure - Zabbix

– app metrics - OpenTSDB

– usage stats - ELK

– external – Pingdom + PagerDuty

4. Resource allocation

• Memory limitations for containers

– Marathon memory settings were not enforced

on container level

– reported container memory = host memory

– enforce Xmx, Xms (OOM)

– crash dumps (mount partitions to have a crash dump)

• CPU weights(Marathon)

– reduced 1 to 0.1 – overprovision

5. Releases are not as easy as expected

• No downtime releases
- simulate 2-4 times the releases in prod-clone

- scripts to monitor downtime during deployment

- connection draining (killed by default)

- messages compatibility (using protoBuff)

• Ansible-ize the manual steps
- prod-clone commands run on prod (gpg to fix)

- 0 to cluster (in x min)

6. Investigations become more complex

• Logs
– file based logs vs centralized logs

– aggregated logs into ELK(requestId)

– using stdout -> no disk space on mesos-slaves (disable)

– under high load the gelf appender caused slowdowns

 move to log4j-kafka

• Metrics in OpenTSDB
– application-specific-metrics

• Correlation between various sources

7. Independent microservices

• Keep microservices as independent

and as small as possible
– 30+ microservices

– a challenge, especially for legacy code(unit tests)

– continuous refactoring for all microservices

8. Periodically reevaluate assumptions

• Follow user behavior over time
– users behavior is different from what

we expected

– API flow changes (v2/v3 for some APIs)

– speed is more important on some flows(sync)

• Scale the microservices based on usage

Future improvements

Future improvements

• Maintenance and evolution of the platform

– Periodical upgrades of the stack

– Improve monitoring

• Auto-scaling

– based on usage patterns

– use of aws-spot instances

• Move all components in Mesos(DC/OS)

– HBase

– ElasticSearch

– Kafka

– HDFS

Demo Time!

• Scaling micro-services to handle traffic increase

Questions?

@danielsarbe

