
www.codethink.co.uk

http://www.codethink.co.uk
http://www.codethink.co.uk

Enough buzzwords!
Moving towards a more efficient and flexible
delivery model in automotive environments.

Event: AGL AMM
Schedule:Sept. 7th 2016
License: CC BY-SA

Agustín Benito Bethencourt
Principal Consultant - FOSS

https://creativecommons.org/licenses/by-sa/4.0/

Who are Codethink?

● Provide software engineering & consultancy services.

● Expert in Linux and Open Source software.

● Focus on automotive industry, embedded devices &

enterprise infrastructure.

● UK Headquarters, serving clients in EU, US and Asia.

● Independent and unbiased.

● AGL Bronze member.

Why Codethink?

Open Source company.

+

Automotive experience.

+

Passionate about building & delivering complex
Linux systems.

The speaker: @toscalix

● Principal Consultant - FOSS at Codethink Ltd

● Experienced in managing people & programs/projects in

the open at Codethink, Linaro, SUSE, ASOLIF...

● Involved in CIP/AGL (Linux Foundation) & GENIVI.

● More about myself at http://www.toscalix.com

https://twitter.com/toscalix
http://www.codethink.co.uk
http://www.codethink.co.uk
http://asolif.es/
http://www.toscalix.com

Today, automotive projects suffer from...

1. Delivery processes are too complex.

2. Long stabilization phase.

3. Long lead times.

4. Delivering Open Source without taking advantage of how

FOSS is developed.

Many more issues but… not enough time to cover them.

… in consequence...

… unbalanced effort in product delivery vs.

software development.

● Few, isolated, sequential, complex stages.
● Binaries over source code.
● Development is “far away” from delivery.

● Some delivery stages become systemic
bottlenecks.

● Lack of delivery culture among developers &
vice versa.

● Too early in the delivery process outcomes
are hard to manage.

● Source code over binaries.
● Integration as sync point, not release

schedule or code.
● Many, interconnected, transparent, parallel

and simple staged steps.

1.- Too complex delivery process

● Automation to reduce effort… only once
processes have proven to be efficient.

● Parallelization.
● Shared and managed software catalogue.

Now Effect

New pattern Key actions

● Long discrete production cycles.
● Little trust in deliverables by customers.
● Testing late, mostly done by testers.

● Long feedback loop.
● Defects found late. Too complex to analyze

in depth.
● Severe changes needed during stabilization:

back to production.
● Feedback from customers against “old but

moving” requirements.

● Tests catalogue.
● Policies: Lego approach… like patches.
● Prioritize those tests that reduce feedback

loop with developers.
● Share -> Efficiency -> Automation.

● Treat test like you treat code.
● Developer, if you do not control the testing,

you do not control your code.
● From a few complex long tests to many short

and simple ones.
● Testing is part of everybody’s job.

2.- Long Stabilization Phase

Now Effect

New pattern Key actions

● Lead time = weeks/months.
● Complex roadmap design.
● Start from scratch every new product instead

of product evolution.

● Long feedback loops between devs,
integrators and testers.

● Low predictability and low flexibility.
● Long time to market so deadlines under too

much pressure

● Transparency.
● Integration as the meeting point: not code or

release schedules.
● Reducing lead times is about reducing

feedback loops.
● It is not about fixing bottlenecks but

deprecate them.

● Prioritise what reduces the feedback loops.
● Shared integration processes/team across

the whole organization.
● Rolling delivery model for your base system.
● Walking (exo)skeleton first.

3.- Long Lead Time
Now Effect

New pattern Key actions

4.- Take advantage of how FOSS is developed (i)
● Apply Open Source principles internally:

○ Transparency within the organization.

○ Quality is everybody’s responsibility.

○ Work like those who develop the code you ship: work like upstream.

● Use popular Open Source development tools:
○ Git: become a source code version control/management expert.

○ Open Source CI and Code Review tools: your code is worth nothing in

isolation.

○ Testing: distribute everything, the lab, the tests, the results, the analysis...

○ Bug tracking, MLs, IRC: what works for communities… works for you.

4.- Take advantage of how FOSS is developed (ii)
● Follow Open Source development best practices:

○ Code review: quality ≠ testing.

○ Dogfooding: are you using Windows while shipping Linux? Really?

○ Code and communicate as if you are in the open.

● Follow Open Source delivery best practices:
○ Rolling for moving fast. Branching for stabilization only. Master first.

○ Beta testing: no test can substitute a beta tester’s feedback.

○ Integration issues are also developer’s responsibility.

○ Testing is everybody’s topic. Treat tests like code.

As a result...
● Lead time and stabilization phase reduction:

○ Gain control over your products.
○ Reduce time to market and maintenance costs.
○ Learn faster. Earn trust from customers.

● Simplify your delivery process
○ Reduce integration risks: more but simpler issues.
○ Traceability / Reproducibility / Software re-usage.
○ Ease the management of providers’ software.
○ Gain flexibility and predictability.

● Balance delivery vs. development effort:
○ Less focus on shipping the product and more on differentiation.
○ Delivery as a first class discipline.

In summary, at Codethink we believe that...

1.- It is not about doing more but about doing the

right things… right.

In summary, at Codethink we believe that...

2.- There is no control without the source code

AND the knowledge associated with it:

work with upstream

In summary, at Codethink we believe that...

3.- Once you gain efficiency and flexibility,

delivery becomes a differentiation factor

In summary, at Codethink we believe that...

4.- If you consume, develop and deliver Open

Source software…

… become an Open Source company

Thanks.

Questions?

www.codethink.co.uk

http://www.codethink.co.uk
http://www.codethink.co.uk

