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▪ Introductions
▪ Companies and Open Source Projects
▪ The OSS-specific elements in product development
▪ Summary
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The Linux Foundation Consulting
▪ Multiple decades of open source consulting experience
▪ Over 300 engagements assisting companies from start-ups to the world’s 
largest corporations

▪ Deep operational experience in executive management, marketing, finance, 
sales, business development and software development
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Companies and OSS Projects
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Typical Commercial Product Development Cycle
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Product Development with OSS
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OSS-Specific Dimensions of Product Development

1. OSS Community Strategy

2. OSS Evaluation & Selection

3. Differentiation Analysis 
(Proprietary or OSS)

4. OSS Integration & Test Plan
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1. Community Strategy
▪ Community strategies typically evolve organically but benefit from 
conscious planning

▪ Identified Best Practices
▪ Select strategically important OSS projects for focus 
▪ Seek committer / maintainer roles in identified project communities
▪ Organizations adapt to OSS project culture, practices and tools to 
succeed with their strategically important projects

▪ Each project is somewhat unique in this regard
▪ Adapt on a project by project basis
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2. OSS Evaluation & Selection

▪ There is tremendous leverage in choosing the right OSS project and 
community at the outset

▪ Most survey respondents required at least some of “due diligence”
▪ In most cases engineers discover and request an OSS project

▪ Criteria are predominantly technical

▪ Licensing is also reviewed carefully in most companies
▪ Support and maintenance dimensions are often neglected in the 
evaluation processes of technology vendors.
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3.  Differentiation Analysis      

▪ Deciding whether each feature is proprietary or open source is a 
constant activity with proprietary products built upon or coupled with 
OSS distributions

▪ What best supports your company’s product and market strategies?
▪ Even previous decisions should be re-evaluated periodically to 
accommodate changes in product landscape and competitive strategies.

▪ Note that any features or customizations not likely to be accepted by 
the OSS Project are inevitably proprietary

▪ Good decisions require a multi-dimensional evaluation (next slide)
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4. OSS Integration and Test Planning

▪ When most of the code for a product is sourced from a single OSS project, 
normalizing your own engineering practices with those of that project

▪ Seamless interoperability with code repo, bug tracking, release process, etc.
▪ Faster on-boarding of contributors to the relevant OSS project

▪ Primarily test and QA OSS code during/post integration together 
with dependencies and value-added product software and hardware

▪ Utilize OSS project test code when available
▪ Develop some in-house tests directed specifically at OSS where customer or 
market requirements dictate
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5.  OSS Integration

▪ Research results indicate
▪ Respondents integrate high percentages of OSS code into products
▪ Large and small organizations integrate directly from OSS trees

▪ Product teams given large degree of freedom to choose appropriate versions

▪ Strictly minimize customization of OSS 
to keep patch loads manageable

▪ Modularize changes, extensions to the OSS
wherever possible

▪ Leverage automated continuous integration to 
▪ Minimize pain from update and merge
▪ Track OSS project trees most closely
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6. OSS Test Program

▪ Need to test OSS standalone and as integrated code
▪ OSS module unit testing
▪ OSS project / sub-system and/or platform testing
▪ Final product testing with integrated open source code

▪ Successful organizations integrating open source
▪ Aggressively contribute test code to projects so that releases arrive 
pre-tested

▪ Develop relationships with OSS project leaders to facilitate upstreaming 
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7.  Bug Reports, Patches and Upstreaming

▪ Research reveals common core practices for upstreaming
▪ Most successful organizations invest in upstreaming early

▪ Build community / maintainer relationships
▪ Retain minimal forked code as “value-added”

▪ Large Orgs (Samsung, Red Hat et al.)
▪ Company ID does not guarantee upstream patch acceptance
▪ Able to dedicate more resources on upstream interface

▪ Small Orgs (smaller OEMs and integrators)
▪ Patches reviewed on merit, as with large contributors
▪ Even more important to consider project style, roadmaps, etc.
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8. Manage Incoming Patches/Releases

▪ Simultaneous development by OSS projects and by product development 
and support teams must be reliably and efficiently merged and tested

▪ Complexity of the problem often leads to slow and expensive processes

▪ Best practices and research findings dictate to
▪ Strictly minimize customizations in order to keep the patch load manageable
▪ Keep retained changes small and modular to streamline merging
▪ Cultivate OSS project relationships to enhance communication and minimize skew
▪ Invest in project test code to minimize quality issues in OSS updates
▪ Use available tools merging capabilities (patch, git/github, etc.)
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Summary

▪ Our research suggests a number of ways that companies can 
structure their development processes to improve

▪ Quality of its OSS-based product releases
▪ Quality of support and mean time to fix critical issues
▪ Predictability of their OSS development resource requirements
▪ Efficiency of their OSS development and management
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