
Chromium OS audio
CRAS audio server



Why another audio server?

low end hardware (1 core atom, or Tegra 2)

optimize for one user (chrome)

dynamic stream re-routing

maintainability, code size, security



Basic Audio Flow

Chromium

CRAS

ALSA

Playback/Capture shmdbus control

BlueZ



Client Library API
int cras_client_create(struct cras_client **client);

int cras_client_run_thread(struct cras_client *client);

struct cras_stream_params *cras_client_unified_params_create(

enum CRAS_STREAM_DIRECTION direction, /* direction - CRAS_STREAM_OUTPUT or CRAS_STREAM_INPUT 
*/

unsigned int block_size, /* block_size - The number of frames per callback(dictates latency). */

enum CRAS_STREAM_TYPE stream_type, /* not currently used */

uint32_t flags, /* not used either. */

void *user_data, /* user_data - Pointer that will be passed to the callback. */

cras_unified_cb_t unified_cb, /* unified_cb - Called for each block size samples */

cras_error_cb_t err_cb, /* err_cb - Called when there is an error with the stream. */

struct cras_audio_format *format); /* format - Specifies bits per sample, num chan, sample rate */

int cras_client_add_stream(struct cras_client *client, cras_stream_id_t *stream_id_out, struct cras_stream_params 
*config);



Server side features

Timer Based Wake-ups based on stream level
Device Sample Rate Estimation
Mixing, DSP, and format conversion
Volume level tuning
Device synchronization
One audio thread



Wake up timing

Wakes up each stream based on a timer
Timer rate set based on block size
Adjusted based on estimated device clock
Underrun handling
Don’t let one stream cause all to glitch
Scheduling jitter, real time threads help



Timing picture

One 44.1kHz stream (good)



Timing glitch

Interactive governor preempts



Device Rate Estimation

By measuring the buffer level at known times 
estimate the sample rate of the device

Use this estimated sample rate to calculate 
how long each stream should sleep



Buffer Management



Avoid copying audio

Shared memory between client and server

Server moves audio directly from shm to 
mmapped device buffer

Format conversion still needs an extra copy.



avoid copying audio continued

Buffer write/read point management is tricky
n devices reading from the same stream and n streams writing to the same device

S1 S2 S3 S4

Dev A Dev B



Write pointer management

Each device tracks offset of all streams 
attached to it.

Similarly each stream tracks its offset into 
each device it is attached to.

offsets are updated after all users have mixed



Two output stream example

HW level 100
HW level 120

HW level 100HW level 100

S2  
0

S1 
40

S1 
60

S2  
0

S1 
60

S2  
20

S1 
40

S2  
0



Output Processing



Output processing

Need Speaker EQ

Each system is different

Different OEMs want different tunings



DSP speed

Output and input processing are on the critical 
path.

Heavily optimized with neon and sse versions.

Keep it simple with a three band DRC and a 10 
band eq per channel.



DSP tuning

Can listen in real time on un-tuned device, 
WebAudio blocks are equivalent to the blocks 
used in the optimized DSP.

Generated config file, hands off tuning for 
core engineering team.



audio-tuning.appspot.com



volume-tuning.appspot.com



UCM



ALSA UCM usage

Use a single ‘HiFi’ verb.

Have devices for headphones, external 
microphones, and HDMI.

A few non-standard values.



ALSA UCM example
SectionVerb {

Value {
OutputDspName "speaker_eq"

}
EnableSequence [

cdev "hw:Venice2"
cset "name='Left Speaker Mixer Left DAC Switch' on"
cset "name='Right Speaker Mixer Right DAC Switch' on"
...snip...
cset "name='Headphone Left Switch' on"
cset "name='Headphone Right Switch' on"
cset "name='Speaker Left Switch' on"
cset "name='Speaker Right Switch' on"
cset "name='Speakers Switch' on"

]

DisableSequence [
]

}



ALSA UCM example headphones
SectionDevice."Headphone".0 {

Value {
JackName "NVIDIA Tegra Venice2 Headphone Jack"
OutputDspName ""

}
EnableSequence [

cdev "hw:Venice2"
cset "name='Speakers Switch' off"
cset "name='HP Left Out Switch' on"
cset "name='HP Right Out Switch' on"

]
DisableSequence [

cdev "hw:Venice2"
cset "name='HP Left Out Switch' off"
cset "name='HP Right Out Switch' off"
cset "name='Speakers Switch' on"

]
}



ALSA UCM example microphone
SectionDevice."Mic".0 {

Value {
JackName "NVIDIA Tegra Venice2 Mic Jack"
CaptureControl "MIC2"

}
EnableSequence [

cdev "hw:Venice2"
cset "name='Int Mic Switch' off"
cset "name='DMIC Mux' ADC"
cset "name='Mic Jack Switch' on"

]
DisableSequence [

cdev "hw:Venice2"
cset "name='Mic Jack Switch' off"
cset "name='DMIC Mux' DMIC"
cset "name='Int Mic Switch' on"

]
}



External Device Support



USB/Bluetooth

Bluetooth chip attached through USB not i2s

USB devices go through ALSA

Bluetooth through a Bluez created socket 
A2DP/HFP/HSP



USB/Bluetooth transfer size

Main challenge is granularity of transfers

Data is sent over USB in URB sized chunks
For Bluetooth one MTU can be > 500 samples
No way to detect the size from user space
Have to pad buffers to ensure enough is ready



HDMI audio output

Auto routing decision is difficult

EDID parsing helps

Docked mode



Improvements for embedded systems

Process hop eliminated on one user systems

Add local streams

Make timing and device management a 
separate library



Avoid waking up

Could improve a lot here

Don’t try to synchronize streams at all

Favor accuracy of stream callbacks over 
wakeup aggregation.



Performance Measurement



CPU usage

measure # of instructions over 5 seconds of 
playback, averaged three runs each.

perf stat -p <server pid>,<player pid> -r 3 -a sleep 5

All tests were on a TegraK1 chromebook.  
Crouton was used to run pulseaudio



perf output
localhost / # perf stat -p 12912,12922 -r 3 -a sleep 5

 Performance counter stats for process id '12912,12922' (3 runs):

        940.900007      task-clock (msec)         #    0.188 CPUs utilized        ( +- 26.80% ) [100.00%]
             4,937      context-switches          #    0.005 M/sec                    ( +-  1.18% ) [99.98%]
                 6      cpu-migrations            #    0.007 K/sec                    ( +- 92.22% )
                 0      page-faults               #    0.000 K/sec                  
       398,970,008      cycles                    #    0.424 GHz                      ( +- 10.34% )
   <not supported>      stalled-cycles-frontend  
   <not supported>      stalled-cycles-backend   
        85,783,097      instructions              #    0.22  insns per cycle          ( +-  6.28% )
        21,426,180      branches                  #   22.772 M/sec                    ( +-  9.23% )
         2,620,234      branch-misses             #   12.23% of all branches          ( +-  0.85% )

       5.005028610 seconds time elapsed                                          ( +-  0.06% )



Single 44.1kHz wav file with aplay

aplay -D<plugin> -B20000 filename.wav

plugin instructions (millions) task-clock (msec)

hw:1 11.2 294

pulse 188.9 1686.4

cras 85.8 940.9



One 44.1kHz one 48kHz

aplay -D<plugin> -B20000 44_1k.wav
aplay -D<plugin> -B20000 48k.wav

plugin instructions (millions) task-clock (msec)

pulse 576.2 1755.1

cras 247.1 837.8



Native clients at 44.1kHz

pacat --rate 44100 --latency 1764 --raw /dev/zero

ctc --playback_file /dev/zero --block_size 441 --rate 44100

pacat 85.1 1506.0

ctc 27.4 673.5



Native clients 44.1kHz and 48kHz

pacat 356.1 1613.0

ctc 102.0 1506.0


