Reliable Host Fencing In CloudStack

Rohit Yadav (Software Architect)
Boris Stoyanov (Sr. Software Test Engineer)

rohit.yadav@shapeblue.com
boris.stoyanov@shapeblue.com

@rhtyd / @bsstoyanov
About Me

Rohit Yadav
- Software Architect @ ShapeBlue
- Contributor and Committer since 2012
- Author and maintainer of CloudMonkey

Boris Stoyanov
- Senior Software Engineer Test @ ShapeBlue
- Contributor since 2016
“ShapeBlue are expert builders of public & private clouds. They are the leading global CloudStack services company.”
High availability is a characteristic of a system, which aims to ensure an agreed level of operational performance, usually uptime, for a higher than normal period. [source: wikipedia]
• Currently **HA** is only supported for VMs by CloudStack.
• VM HA mechanism works for VMs that are marked **HA**.
• Implementation tied to VM as a first class resource, asynchronously scheduled, limited to VM investigation/fencing/restart on new host.
HA in Production: Status Quo

- Investigations are VM centric and not host centric.
- Limited fencing of host, highly unreliable.
- VM HA may end up starting VMs on another host, while the VMs may be running on the faulty. Large environments see corrupt VMs and disks.
- Unchecked faulty hosts and faulty neighbors, with no automatic-recovery.
- Real world issues seen in a very large KVM environment.
Attempted Solutions: KVM

- Check VM for disk activities based on a timeout/threshold before re/starting VM.
- (Wall) Clocks are not reliable
- Maintenance and management issues
- No recovery mechanism, fencing still remains unreliable

References:
https://issues.apache.org/jira/browse/CLOUDSTACK-8762
https://github.com/apache/cloudstack/pull/753
Long Term Solution?

- CloudStack needs a way to perform power management tasks for hosts
- Solve issues of corrupt disks due to VM HA and unreliable host fencing
- Improve experience for admins: granular configuration, feature *kill-switch*, maintenance, management, reporting, alerts, investigations, reliable fencing and recovery etc.
Host Power Management for CloudStack

- Implemented a pluggable out-of-band management framework for CloudStack
- Granular configuration per host, kill switch at zone/cluster/host level
- Default plugin for IPMI 2.0 compliant hosts to support power operations: on, off, reboot, shutdown, status etc.
- High quality tests, end-to-end testing based on ipmisim
- DIY oobm plugin

Reference:
https://cwiki.apache.org/confluence/display/CLOUDSTACK/Out-of-band+Management+for+CloudStack
Building Blocks for Host HA

- Solve reliably fence/recover a host: use the new shiny out-of-band management subsystem
- What's missing:
 - Granular HA configuration
 - Host HA kill-switch: at zone/cluster/host level
 - Tuning: Threshold based investigation, activity checks, timeouts etc.
 - Task/Load management, circuit breakers, constraint based state transitions and operations

Reference:
https://cwiki.apache.org/confluence/display/CLOUDSTACK/KVM+HA+with+IPMI+Fencing
Rethink HA

- CloudStack organization units as partitions: Zone, Pod, Cluster, Host, VM.
- Separate policy from mechanism:
 Implement framework/managers to enforce policies, have plugins to carry out mechanisms
- Define HA for a general resource, pluggable HA provider implementations.
- Operational simplicity.
 - Granular configuration, kill-switch at zone/cluster/host level. Disabled by default.
 - Threshold based investigations, checking, fencing and recovery.
- Leverage existing abstractions.
- Integrated resource management.
Host HA: Design and Implementation

- **HA Resource Management Service**
 - HA resource lifecycle management
 - HA resource type agnostic
 - Disabled by default, granular configurations, zone/cluster/host kill-switch, tuning

- **HA Provider**
 - Resource specific HA plugin
 - Defines partition and resource type
 - DIY HA provider for partition: host/hypervisor/etc
 - One HA provider per resource type, per partition

Reference:
https://cwiki.apache.org/confluence/display/CLOUDSTACK/Host+HA
Host HA: FSM States Explained

- **HA Resource FSM States**
 - Available
 - Suspect
 - Checking
 - Degraded
 - Recovering, Recovered
 - Fencing, Fenced
 - Disabled
 - Ineligible
Host HA: FSM State Transitions

Reference:
https://cwiki.apache.org/confluence/display/CLOUDSTACK/Host+HA
Host HA: Lifecycle management

- Granular HA configuration
- Kill switch: enable/disable for a partition (zone/cluster/host)
- HA validation and ownership management
- New Background Polling Manager for executor service management
- Tasks executor, bounded (ephemeral) queue management
- HA Polling tasks: Health Checks, Activity Checks, Recovery Task and Fence Task
- FSM transitions based on task execution result
- HA resource counter management: track investigation rounds, thresholds, timestamps, recover/fence operations
Host HA: KVM HA Provider

- STONITH (Shoot The Other Node In The Head) fencing model
- Activity check operations, checks for disk access activities on NFS storage
- Configurable activity check interval and activity checks
- Tunable timeouts and thresholds
- Request-reply model to check activity checks via adjacent eligible and healthy host(s)
- Uses out-of-band management subsystem to carry out recover and fence operations
- Recovery is attempted before fencing of the host
- Alerting and reporting of operations
- Remaps VM-HA host state returned to VM-HA framework based on Host HA states, **only for hosts with Host HA enabled**.
- For Host HA to work effectively, existing VM HA framework to work in tandem with Host HA.
- By default Host HA is disabled, no explicit configuration changes needed for existing users pre/post upgrade.
- Currently, done for KVM HAProvider

<table>
<thead>
<tr>
<th>Host HA state (KVM)</th>
<th>VM-HA host state returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>Up</td>
</tr>
<tr>
<td>Suspect/Checking</td>
<td>Up (Investigating)</td>
</tr>
<tr>
<td>Degraded</td>
<td>Alert</td>
</tr>
<tr>
<td>Recovering/Recovered/Fencing</td>
<td>Disconnected</td>
</tr>
<tr>
<td>Fenced</td>
<td>Down</td>
</tr>
<tr>
<td>Ineligible/Disabled</td>
<td>--</td>
</tr>
</tbody>
</table>
• HA Provider for Simulator provides means and instrumentation to perform end-to-end deterministic testing of the framework.
• Provides means of validation of the feature and shows pluggability of the framework.
• New Simulator APIs provides means of validating FSM sequences and instrumenting internal data structures.
• Marvin based integration test, covers FSM transitions, HA operations, validations, configurations, HA ownership.
Recently, nested CloudStack environments such as Trillian, Bubble etc have tremendously helped with QA efforts. In such environments, hypervisor hosts are VMs in another CloudStack environments.

As part of the FR, we've implemented a new out-of-band management plugin for nested CloudStack environment.

This plugin can perform power management operations to start/stop/reboot the host VMs.

The new oobm plugin allows for scalability and load testing of the Host HA feature in nested CloudStack environment. Currently being tested for a large KVM based environment.
Host HA: Current State & Future Plans

- Pull request: https://github.com/apache/cloudstack/pull/1960
- FS: https://cwiki.apache.org/confluence/display/CLOUDSTACK/Host+HA
- Currently supports two HA Provider implementations:
 - KVM: Out-of-band management, NFS supported
 - Simulator: QA/testing
- Available out-of-band management plugins: ipmitool and nested-cloudstack
- Likely available in Apache CloudStack 4.11 or above
- Future Plans:
 - Multiple HA Provider implementations for other hypervisors, support for other storage
 - Scope for extension to support HA for other resources/partitions
Host HA: Thanks & Credits

- Abhinandan Prateek: KVM HA Provider implementation
- Boris Stoyanov: Reviews and QA
- Ilya Musayev, Marcus Sorensen and John Burwell: Requirements, feedback and design
- Rohit Yadav: Overall design and implementation
- Team ShapeBlue, Paul, Dag, Daan – Reviews, discussions, testing, Trillian setups
• Comments, questions welcome!
• Discuss on dev ML or on the PR.