BUILDING MULTIPROTOCOL IOT NODES

WITH THREAD, BLE, AND ZIGBEE

ALIN LAZAR

FEBRUARY 23, 2017 PORTLAND, OR

Summary

- Benefits of Multiprotocol Systems
- Protocol Standards
- Use Cases
- Platforms and Stacks
- Application Considerations
- Examples

Speaker: Alin Lazar

Software Engineering Manager at NXP Semiconductors 10+ years experience with low power wireless protocols Shipped ZigBee, Thread, BLE network stacks and tools for microcontrollers Focus on standardization and certification Vice Chair of Thread Group Technical Committee

Benefits of Multiprotocol Systems

Benefits of Multiprotocol Systems

Expanded, flexible connectivity from the same Device

Reduce Design Costs

One SKU, single firmware build

Opens Path to IoT Convergence

Applications can leverage best aspects of multiple standards, reduce lock-in

5

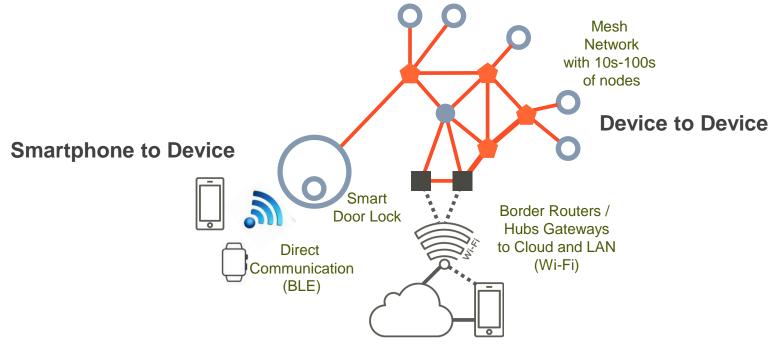
Protocol Standards

Wireless Protocol Standards of Focus

Bluetooth LE (4.0+) Connect to smartphones, PCs Accessories, Wearables, Beacons

Low power mesh protocol Connect to smart home hubs 100s of smart home & lighting certified products

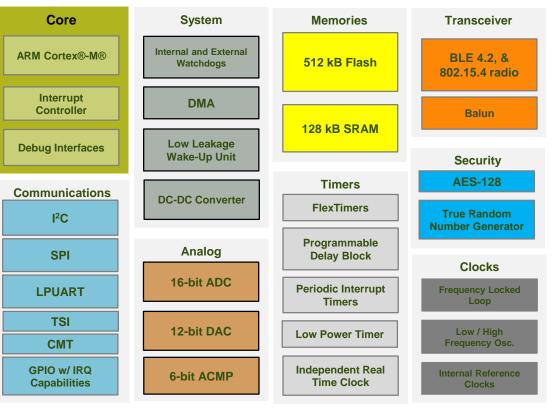
IPv6 network layer scalable to low power IoT Mesh network without Single Point of Failure Border Routers: IP network gateways for mobile and cloud



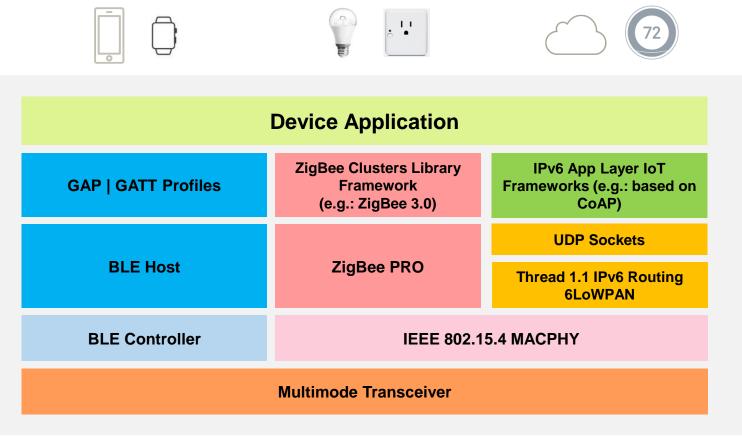
Use Cases

Use Cases for Multiprotocol Edge Nodes

Device to Cloud



Multiprotocol Platforms and Stacks



Integrated Microcontrollers with Multimode Radios

- Available from several MCU vendors
- Commonly based on ARM® Cortex®-Mx
- Most common multimode Transceiver configuration: BLE and IEEE 802.15.4
- Various on-chip memory sizes
- Optimized for deep sleep low power
- Integrated security/TRNG acceleration

Multi-Protocol Stacks for IoT Edge Nodes

Application Considerations

Multiprotocol MCU Application Considerations

Firmware System and RTOS

Manage Radio Concurrent Operation and Co-Existence

Sleep modes and wake-up patterns

OTA Updates

Application layer protocol and ecosystem

Security

Concurrent Radio Protocol Operation API

```
typedef enum
    gMWS BLE c,
    gMWS 802 15 4 c,
    gMWS ANT c,
    gMWS GENFSK c,
    gMWS None c
} mwsProtocols t;
                            (mwsProtocols_t protocol, pfMwsCallback cb);
mwsStatus t MWS Register
                            (mwsProtocols t protocol, uint8 t force);
mwsStatus t MWS Acquire
mwsStatus t MWS Release
                            (mwsProtocols t protocol);
mwsStatus t MWS SignalIdle (mwsProtocols t protocol);
mwsStatus t MWS Abort
                            (void):
```

uint32_t MWS_GetInactivityDuration (mwsProtocols_t currentProtocol); mwsProtocols_t MWS_GetActiveProtocol (void);

Radio Co-Existence with MWS API

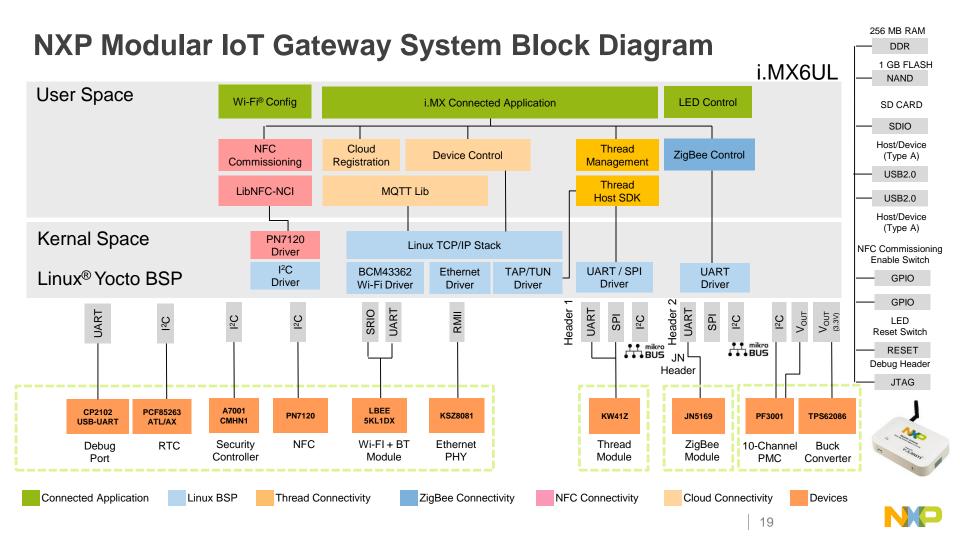
```
void MWS_CoexistenceEnable (void);
void MWS_CoexistenceDisable (void);
```

```
mwsStatus_t MWS_CoexistenceInit(void *rfDenyPin, void *rfActivePin, void *rfStatusPin);
mwsStatus_t MWS_CoexistenceRegister (mwsProtocols_t protocol, pfMwsCallback cb);
void MWS_CoexistenceSetPriority(mwsRfSeqPriority_t rxPrio, mwsRfSeqPriority_t txPrio);
```

```
mwsStatus_t MWS_CoexistenceRequestAccess(mwsRfState_t newState);
mwsStatus_t MWS_CoexistenceChangeAccess(mwsRfState_t newState);
uint8_t MWS_CoexistenceDenyState(void);
void MWS CoexistenceReleaseAccess(void);
```

```
typedef uint32_t(*pfMwsCallback) (mwsEvents_t event);
typedef enum
{
    gMWS_Init_c,
    gMWS_Idle_c,
    gMWS_Active_c,
    gMWS_Release_c,
    gMWS_Abort_c,
    gMWS_GetInactivityDuration_c
}mwsEvents_t;
```


Multiprotocol IoT Gateways



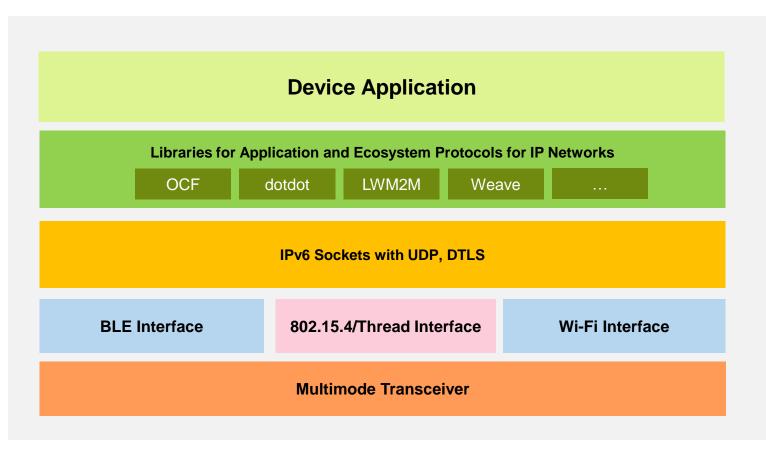
Gateways, Hubs, Border Routers

Gradual Transition from Application Layer Gateway to Network Layer Gateway

What's Next for Multiprotocol IoT

What's Coming Next for Multiprotocol IoT Systems

Even more standards / protocols integrations at the edge: Wi-Fi LPWAN


Commercial / Professional use cases

Even more flexible radios

Mesh networks everywhere!

IPv6 (and end-to-end) everywhere!

IP as Network Convergence Layer (Projection)

22

Your Next Steps

Get some Multiprotocol IoT platforms:

NXP KW41Z FRDM-KW41Z USB-KW41Z Modular Gateway Reference Design

Get platform drivers, firmware SDKs, Linux Host SDKs:

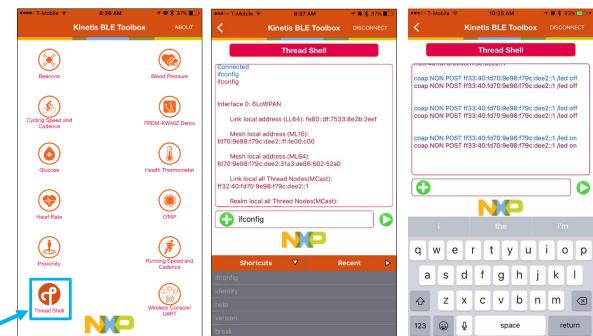
NXP MCUXpresso Config Tools KW41Z SDK Software and Design Tools

Join and contribute to the standard groups:

Influence standard spec definitions Achieve quicker, certified interoperability <u>www.bluetooth.com</u> <u>www.threadgroup.org</u> <u>www.zigbee.org</u> Public events: ZigBee Winter Summit – Monday March 6, Austin, TX Thread Technology Workshop – Monday March 27, Mountain View, CA

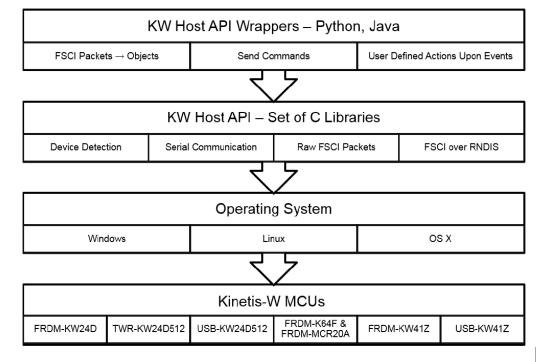
Contribute to OSS (most OSS support is WIP and needs your help):

Zephyr, Mynewt, NimBLE, IoTivity, OpenThread



Hands-on Examples

Example 1: Thread Network Shell with Kinetis BLE Toolbox App



Example 2: Host SDK

Using Python Bindings (multimode.py) for Linux Host scenario

Available as part of <u>KW41Z Connectivity Software Package</u>

tools\wireless\host_sdk\hsdk-python\src\com\nxp\wireless_connectivity\test\multimode.py

Looking forward to your Questions

alin.lazar at nxp.com https://community.nxp.com/community/wireless-connectivity