
Extracting analytics from complex

OpenEmbedded builds

David Reyna

Wind River Systems

Embedded Linux Conference ·

Portland · 23 February 2017

2

Introduction

• Introduction:

• I am David Reyna, senior developer at Wind River

Systems, maintainer for Toaster, long time contributor

to OpenEmbedded and Yocto Project.

•Thesis:

•The bitbake event system, together with the event

database that comes with Toaster, can be used to

generate and provide access to analytical data and

provide a new unique toolset to solve difficult problems

•Goal: Introduce, Enable, Call to Opportunity

3

Introduction

• What we will cover:

• The problem space for extracting and analyzing data

• Introduce the bitbake event system and interfaces

• Introduce the bitbake event database

• Deep dive on the event system

• Examples, existing tools, custom tools, and use cases

• Gotchas

• Resources

• My builds are working, do I need this?

• Excellent, you are in good shape! However, if they stop working or when

you do new work or try to scale, here are additional tools for your toolbox.

The Problem Space

5

The Problem Space (as I see it)
• Types of addressable problems with analytics:

• Issues with time or coincident sensitivity

• Issues with transient data values

• Issues with transient UFOs (Unidentified Failing Objects)

• Issues with trends (size, time, cache misses, scaling)

• If the problem is a needle, where is the haystack to look in

• We need:

• Easy access to deep data, time, and ordering

• Reliable interaction with bitbake

• Easy access to the data with tools, both provided and custom

• Ability to acquire long term data, from a day to many months

• Keep bitbake as pristine as possible

6

The Problem Space (2)
• Well known and documented data from bitbake builds:

• Artifacts (Kernel, Images, SDKs)

• Manifests (Image content, Licenses)

• Logs (Build/Error logs)

• Variables (bitbake -e)

• Dependencies

• However…

• These only capture the final results of the build, not how the build progressed nor

the intermediate or analytical information.

• It is hard for example to correlate logs with other logs, let alone with other builds

• The Answer!

• The bitbake event system

• The bitbake event database

The Event System Features

8

Event System Features
 • Built into Bitbake

• The event system is built deeply into bitbake, and has years of used and testing

• Rich set of data events

• There are more than 40 existing event types, covering builds to tasks to recipes,

with status and details describing the results, to progress events to support the

visual progress bars

• IPC over python xmlrpc sockets, with automatic data marshalling

• This allows bitbake and its interfaces to run in separate contexts

• Very flexible

• Events are not locked into a rigid design structure

• Easy to attach custom event handlers

• Easy to add custom event types

9

Overview of Available Events

• BuildInit|BuildCompleted|BuildStarted

• ConfigParsed|RecipeParsed

• ParseCompleted|ParseProgress|ParseStarted

• MultipleProviders|NoProvider

• runQueueTaskCompleted|runQueueTaskFailed|runQueueTaskSkipped|

 runQueueTaskStarted

• TaskBase|TaskFailed|TaskFailedSilent|TaskStarted|

 TaskSucceeded

• sceneQueueTaskCompleted|sceneQueueTaskFailed|sceneQueueTaskStarted

• CacheLoadCompleted|CacheLoadProgress|CacheLoadStarted

• TreeDataPreparationStarted|TreeDataPreparationCompleted

• DepTreeGenerated|SanityCheck|SanityCheckPassed

• MetadataEvent

• LogExecTTY|LogRecord

• CommandCompleted|CommandExit|CommandFailed

• CookerExit

10

Event Clients

• Bitbake actually runs in a separate context, and expects an event client (called a

“UI") to display bitbake's status and output

• Here are the existing bitbake event clients:

• Knotty: this is the default bitbake command line user interface that you know and

love. It uses events to display the famous dynamic task list, and to show the various

progress bars

• Toaster: this is the bitbake GUI, which provides both a full event database and a

full feature web interface. We will be using this as our primary example since it

contains the most extensive implementation and support for events

• Depexp: this executes a bitbake command to extract dependency data events, and

then uses a GTK user interface to interact with it

• Ncurses: this provides a simple ncurses-based terminal UI

11

Event Database
• The event database is built into Toaster to maintain persistent build data

• It can however just as easily be used directly with command line scripts

or other SQL compatible tools

Bitbake

Event Database (SQL)

Toaster GUI Server

Toaster Event Client

User Web Client

Knotty Event Client

User Console

User Console

Python Script

12

Example Event Database with CI Builders
• If you enable the Toaster UI in a CI system, you can additionally get the

event artifacts together with your build artifacts (you will definitely need

to select a production level database)

Bitbake

Event Database (SQL)

Toaster Event Client Knotty Event Client

Continuous Integration Build System

Lost

event

data

13

The Event Database Instance
 • By default, the event database is instantiated with sqlite

• Easy to manage

• Instant access out of the box

• Small footprint

• Easy for quick runs, small user base

• However, for managing multiple builds sqlite soon fails because it cannot fully

manage simultaneous access

• For production systems, it is recommend to setup a robust system like MySQL or

mariaDB and attach it to Toaster in place of sqlite

• Harder to set up the first time, but then just works

• Much more robust

• Can handle many simultaneous users and builds

• Instructions can be found here:

https://wiki.yoctoproject.org/wiki/Setting_up_a_production_instance_of_Toaster

https://wiki.yoctoproject.org/wiki/Setting_up_a_production_instance_of_Toaster
https://wiki.yoctoproject.org/wiki/Setting_up_a_production_instance_of_Toaster
https://wiki.yoctoproject.org/wiki/Setting_up_a_production_instance_of_Toaster

14

Adding Build Data to the Event Database
 • There are two easy ways to get build data into the event database

• Create and execute your builds from within the Toaster GUI

• Start Toaster, and run your command line builds in that environment

• The ‘source toaster’ performs these tasks

• Creates the event database if not present, applies any schema updates

• Starts the web client (this can be ignored for command line usage)

• Sets the command line environment to use Toaster as the UI for bitbake (“BITBAKE_UI”)

 $. oe-init-build-env

 $ source toaster start webport=127.0.0.1:8800

 $ firefox localhost:8800

 $. oe-init-build-env

 $ source toaster start webport=0.0.0.0:8800

 $ bitbake <whatever>

15

Existing Toaster Analytics
 • The Toaster GUI already provides analytical data on builds, for example

on sstate cache success rate, task execution time, CPU usage, and Disk

I/O

16

Existing Toaster Analytics
 • The Toaster GUI can also for example display the intermediate values of

bitbake variables, specifically each variable’s modification history down

to the file and line.

The Event System Deep Dive

18

The components of the event system

• Quick overview of the event system codebase

• Event Class:

• bitbake/lib/bb/event.py

• Event creation examples:

• bitbake/lib/bb/build.py

• Event client registration examples:

• bitbake/lib/bb/ui/toasterui.py

• bitbake/lib/bb/ui/knotty.py

• Attaching event triggers to bitbake tasks (Toaster)

• meta/classes/toaster.bbclass

• Event handler examples, plus database population (Toaster):

• bitbake/lib/bb/ui/buildinfohelper.py

19

The Event Class

• The event class is minimal, it only predefines a single member ("pid")

• All events are sub-classed and extended, for example:

class Event(object):

 """ Base class for events"""

 def __init __(self):

 self.pid = worker_pid

class TaskBase (event.Event):

 """Base class for task events"""

 def __init __(self, t, logfile , d):

 self._task = t

 self._package = d.getVar ("PF")

 self._mc = d.getVar ("BB_CURRENT_MC")

 self.taskfile = d.getVar ("FILE")

 self.taskname = self._task

 self.logfile = logfile

 self.time = time.time ()

 event.Event.__ init __(self)

 self._message = "recipe %s: task %s: %s" % (d.getVar ("PF"),

 t , self.getDisplayName ())

class TaskStarted (TaskBase):

 """Task execution started"""

 def __init __(self, t, logfile , taskflags , d):

 super(TaskStarted , self).__ init __(t, logfile , d)

 self.taskflags = taskflags

20

Event Creation

• Events are easily defined and fired

• Example 1: bitbake/lib/bb/build.py

• Example 2: meta/classes/toaster.bbclass

def _exec_task (fn , task, d, quieterr):

 ...

 event.fire (TaskStarted (task, logfn , flags, localdata), localdata)

python toaster_artifact_dumpdata () {

 """

 Dump data about SDK variables

 """

 event_data = {

 "TOOLCHAIN_OUTPUTNAME": d.getVar ("TOOLCHAIN_OUTPUTNAME")

 }

 bb.event.fire (bb.event.MetadataEvent (" SDKArtifactInfo ",

 event_data), d)

}

21

Event Client Registration Example

• Here is how a bitbake UI registers the events it will handle (Toaster)

bitbake /lib/bb/ ui /toasterui.py:

 _evt_list = [

 " bb.build.TaskBase ",

 " bb.build.TaskFailed ",

 " bb.build.TaskFailedSilent ",

 " bb.build.TaskStarted ",

 " bb.build.TaskSucceeded ",

 ...

 " bb.runqueue.sceneQueueTaskCompleted ",

 " bb.runqueue.sceneQueueTaskFailed ",

 " bb.runqueue.sceneQueueTaskStarted ",

 " logging.LogRecord "]

 def main(server, eventHandler , params):

 result , error = server.runCommand ([" setEventMask ",

 server.getEventHandle (),

 llevel , debug_domains , _evt_list])

22

Attaching event triggers to bitbake tasks

• Example 1: meta/classes/toaster.bbclass. Here we hook into a task’s post

functions.

python toaster_artifact_dumpdata () {

 """

 Dump data about SDK variables

 """

 event_data = {

 "TOOLCHAIN_OUTPUTNAME": d.getVar ("TOOLCHAIN_OUTPUTNAME")

 }

 bb.event.fire (bb.event.MetadataEvent (" SDKArtifactInfo ",

 event_data), d)

}

do_populate_sdk [postfuncs] += " toaster_artifact_dumpdata "

do_populate_sdk [vardepsexclude] += " toaster_artifact_dumpdata "

do_populate_sdk_ext [postfuncs] += " toaster_artifact_dumpdata "

do_populate_sdk_ext [vardepsexclude] += " toaster_artifact_dumpdata "

23

Attaching event triggers to bitbake tasks (2)

• Example 2: meta/classes/toaster.bbclass: Here we use “addhandler” to have our

handler be automatically invoked on the selected events.

get list of artifacts from sstate manifest

python toaster_artifacts () {

 if e.taskname in [" do_deploy ", " do_image_complete ", " do_populate_sdk ",

 " do_populate_sdk_ext "]:

 ...

 bb.event.fire (bb.event.MetadataEvent (" toaster_artifacts ", data), e.data)

}

addhandler toaster_artifacts

toaster_artifacts [eventmask] = " bb.runqueue.runQueueTaskSkipped

 bb.runqueue.runQueueTaskCompleted "

24

Event Receiver Loop Example (Toaster)

• Example: bitbake/lib/bb/ui/toasterui.py: The main loop simply waits for events to

occur, compares their instance type, and routes them appropriately.

• There is a timeout when waiting for an event so that the UI will not be blocked,

and can for example check for CTLR-C’s from the user.

def main(server, eventHandler , params):

 ...

 while True:

 try:

 event = eventHandler.waitEvent (0.25)

 if event is None:

 continue

 if isinstance (event, bb.event.HeartbeatEvent):

 continue

 if isinstance (event, bb.event.ParseStarted):

 ...

 buildinfohelper.set_recipes_to_parse (event.total)

 continue

 if isinstance (event, (bb.event.BuildStarted , bb.event.BuildInit)):

 ...

Example 1: Creating a custom command line

event analytic tool

26

Example Custom Command Line Tool

• Given that the event database is an SQL database, it is easy to write

custom python scripts to extract and analyze the build analytics

• In this section, we present a minimal python script to access the Toaster event

database

• We will also present an example of a more full featured python application that

does data analysis on task and recipe parallel execution, as a proof of concept

(source code available)

• Note: you can find the event database table schemas and its memberôs name,

type, and order directly from the Toaster event database, for example:
 $ sqlite3 toaster.sqlite

 # sqlite> .tables

 é orm_build é

 # sqlite> .schema orm_build

27

Minimal Event Database Python Script
 • Accessing the data in the event database is very simple. In this example we will print the data

from the first-most Build record, and also look up and print the associated Target record

$ cat sample_toaster_db_read.py

#!/ usr /bin/ env python3

import sqlite3

conn = sqlite3.connect(' toaster.sqlite ')

c = conn.cursor ()

c.execute ("SELECT * FROM orm_build ")

build= c.fetchone ()

print('Build=%s' % str (build))

c.execute ("SELECT * FROM orm_target where build_id = '%s'" % build[0])

print('Target=%s' % str (c.fetchone ()))

$

$ python3 sample_toaster_db_read.py

Build=(1, 'qemux86', 'poky', '2.2+snapshot - 20170120', ó

 2017 - 01- 20 08:02:36.924607', '2017 - 01- 20 08:20:35.548057', 0,

 '/opt/ toaster_master /poky/build - toaster - 2/ tmp /log/cooker/qemux86/

 build_20170120_000245.938.log ', '1.32.0', 2, 850, 850, '20170120080256')

Target=(1, ' nativesdk - chrpath ', '', 0, 0, None, 1, None)

$

28

Full Feature Event Database Python Script

• In this section we will present an example python application

that extracts and analyzes event data

• Specifically, we will attempt to investigate the question:

“How exactly do the tasks of a build overlap execution with other tasks,

and on a higher level how to recipes overlap execution with other

recipes, plus what data can extract around this questionò

• While this may not be a deep problem, and there are certainly OE tools

that already provide similar information (e.g. pybootchart), the point is

that (a) this was very easy and fast to write, and (b) you can now fully

customize the analysis and output to your needs and desires.

29

Full Feature Event Database Python Script
• Here is the methodology

• Select a build

• Read the build’s task list (which include each task’s start and stop), and also attach

all associated parent recipes

• For each task, find all other tasks whose execution overlaps

• For each recipe, find all other recipes whose execution overlaps (from its first to last

task)

• Here are some of the goals

• Compute histograms of the overlap, understand the nature and extent of overlaps

• Review and understand the tasks/recipes that have no overlaps

• Examine areas of low overlap, and see if the parallelism can be improved to reduce

build time

• As a long term goal, compare to intermittent package failures to identify potential

race conditions

30

Task and Recipe Build Analysis Script
 • Here is the list of available commands and features

python3 ~/ lx90/event_overlap.py -- help

Commands:

 ? : show help

 b,build [build_id] : show or select builds

 d,data : show histogram data

 t,task [task] : show task database

 r,recipe [recipe] : show recipes database

 e,events [task] : show task time events

 E,Events [recipe] : show recipe time events

 o,overlap [task|0|n] : show task|zero|n_max execution overlaps

 O,Overlap [recipe|0|n] : show recipe|zero|n_max execution overlaps

 g,graph [task] [> file] : graph task execution overlap

 G,Graph [recipe] [> file] : graph recipe execution overlap

 h,html [task] [> file] : HTML graph task execution overlap [to file]

 H,Html [recipe] [> file] : HTML graph recipe execution overlap [to file]

 q,quit : quit

Examples:

 * Recipe/task filters accept wild cards, like 'native - *, '* - lib*'

 * Recipe/task filters get an automatic wild card at the end

 * Task names are in the form ' recipe:task ', so ' acl *patch'

 will specifically match the ' acl *: do_patch ' task

 * Use 'o 2' for the tasks in the two highest overlap count sets

 * Use 'O 0' for the recipes with zero overlaps

31

Initial Results
• Here are some initial results when examining a “core-image-minimal” project with

Task Count=2658 and Recipe Count=254

• We have as many as 148 tasks being able to run with all 24 available threads used

• There were 621 tasks that ran solo

• There were zero recipes that ran solo

• There was one task “linux-yocto:do_fetch” whose execution overlapped with 983 other tasks;

the second most overlap was “python3-native:do_configure” with an overlap count of 798

• There were 69 recipes that overlaps with 186 other recipes, with the next highest overlap

being 4 recipes that overlap with 171 other recipes

• The below sample HTML output page on task overlaps shows the amount of information

available, with the recipe page too large to show in this context

32

Histogram of Parallel Task/Recipe Execution
 Histogram:For each task, max number of tasks executing in parallel

 0 1 2 3 4 5 6 7 8 9

 --

 0) 0 621 16 22 50 49 56 83 94 45

 10) 57 82 87 81 47 56 58 62 64 88

 20) 121 182 268 221 148

Histogram:For each recipe's task set, max number of recipes executing in parallel

 0 1 2 3 4 5 6 7 8 9

 --

 0) 0 5 1 1 1 1 1 1 3 3

 10) 1 2 2 2 2 1 1 3 1 6

 20) 1 1 2 1 1 2 2 1 1 1

 30) 1 1 2 2 1 3 1 2 2 1

 40) 1 1 1 1 1 1 1 1 3 1

 50) 1 2 4 2 2 1 1 1 1 2

 60) 1 2 1 1 1 2 1 1 1 2

 70) 1 1 2 2 2 2 1 3 3 1

 80) 3 2 1 1 1 10 7 8 8 8

 90) 7 7 2 2 3 2 2 1 1 2

100) 2 1 1 1 2 2 1 3 2 3

110) 2 1 2 1 1 1 1 2 1 1

120) 2 1 1 2 1 1 1 2 1 2

130) 1 1 1 1

33

Histogram of Overlapping Task/Recipe Execution
 Histogram:For each task, max number of tasks that overlap its build

 0 1 2 3 4 5 6 7 8 9

 --

 0) 614 9 10 29 28 42 46 55 51 47

10) 56 52 48 59 28 33 63 29 43 60

20) 60 94 119 223 105 95 53 57 36 40

30) 20 26 15 17 13 8 11 9 9 2

40) 7 10 9 7 3 6 6 3 6 6

50) 6 6 6 2 2 5 3 1 3 1

60) 4 2 5 1 2 2 1 2 3 5

... (sparse) ...

980) 0 0 1

Histogram:For each recipe's task set, max number of recipes that overlap its build

 0 1 2 3 4 5 6 7 8 9

 --

 0) 67 0 0 0 0 0 0 0 0 0

 10) 0 0 0 0 0 0 0 0 0 0

... (all zeros) ...

 80) 0 0 0 0 5 1 1 8 4 1

 90) 3 2 0 1 4 4 3 0 0 0

100) 0 0 0 0 0 0 2 1 0 0

110) 2 0 1 2 0 0 3 0 1 2

120) 0 0 0 0 0 0 0 0 2 0

130) 0 26 8 5 2 6 5 0 0 1

... (sparse) ...

170) 0 4 0 0 0 0 0 0 0 0

180) 0 0 0 0 0 0 69

34

Sample HTML Output of Task Overlap

Example 2: Custom event types

36

Custom events

• Normally, for a custom event you merely sub-class the event class or some other

existing class, and add your new content

• In this example, we show how we can easily extend "MetadataEvent" and use it

on the fly, since the sub-event 'type' is an arbitrary string and the data load is a

simple dictionary.

• Event creation:

• Event handler:

my_event_data = {

 "TOOLCHAIN_OUTPUTNAME": d.getVar ("TOOLCHAIN_OUTPUTNAME")

}

bb.event.fire (bb.event.MetadataEvent (" MyMetaEvent ", my_event_data), d)

if isinstance (event, bb.event.MetadataEvent):

 if event.type == " MyMetaEvent ":

 my_toochain = event.data ["TOOLCHAIN_OUTPUTNAME"]

Example 3: Custom Event Interface (knice)

38

Custom Event UI

• If the knotty UI is too simple (since it does not collect data) and the Toaster UI too large for

your analytic needs, you can make your own bitbake UI and have it handle specific events as

you need. Here is a simple tutorial on how to do that.

• What we will do is start with the “knotty” UI, and then customize it as the “knice” UI.

• We make a simple change:

• Now we run it:

$ cd bitbake /lib/bb/ ui

$ cp knotty.py knice.py

$ sed ïi ïe "s/ notty /nice/g" knice.py

- print("Nothing to do. Use ' bitbake world' to build everything, \

 or run ' bitbake -- help' for usage information .")

+print(ñNICE: Nothing to do. Use ' bitbake world' to build everything, \

 or run ' bitbake -- help' for usage information.")

[build]$ bitbake - u knice

NICE: Nothing to do. Use ' bitbake world' to build everything, or run

' bitbake -- help' for usage information .

39

Custom Event UI (2)

• Now let us instrument an event by updating “knice.py”.

• First, let us add "bb.event.DepTreeGenerated“ to the event list

• Now let us add a print statement to the otherwise empty

"bb.event.DepTreeGenerated“ handler code

• Now we run it and see our code run!

- " bb.event.ProcessFinished "]

+ " bb.event. ProcessFinished " ," bb.event.DepTreeGenerated "]

 if isinstance (event, bb.event.DepTreeGenerated):

+ logger.info ("NICE: bb.event.DepTreeGenerated received!")

 continue

[build]$ bitbake - u knice quilt - native

...

NOTE: NICE: bb.event.DepTreeGenerated received! | ETA: 0:00:00

...

Bonus Example 4: Debugging coincident data in

bitbake

41

Using Events for debugging bitbake

• You can also use the event system in debugging bitbake or your classes.

• Example 1: The quintessential example is to use “logger.info()” to insert print

statements into the code. This is implemented as an event, meaning that will it be

passed to the correct external UI and not lost in some random log file.

• Example 2: The ESDK file used to be copied to the build’s “deploy/sdk” directory

as part of the task “populate_sdk_ext”. However, it is somehow happening later,

and it is hard reading the code to determine when and where that is now

occurring. We can use the event stream to help narrow down the candidates.

• First, we add a log call into the event read loop in “bitbake/lib/bb/ui/toasterui.py”. This will

provide a log of the received events as they go by, and also reveal when the ESDK file is

created.

• I then run a build (in the Toaster context):

logger.info (ñFOO:"+str (event)+","+

 str (os.path.isfile ('< path_to_esdk_file >')))

42

Using Events for debugging bitbake (2)

• Second, we then run a build (in the Toaster context) and collect the events:

• Third, we examine the log to find when the file’s state changed.

• We see that the existing ESDK file was removed after

“bb.event.DepTreeGenerated”, and placed after “sstate-build-populate_sdk_ext”. In

other words it was moved out of the main “populate_sdk_ext” task and into its

sstate task. QED.

$ bitbake do_populate_sdk_ext > my_eventlog.txt

...

NOTE: FOO:<bb.event.DepTreeGenerated object at 0x7f94ec829710>,True

NOTE: FOO:<bb.event.MetadataEvent object at 0x7f94ec829358>, False

...

NOTE: FOO:<LogRecord : ... "Executing buildhistory_get_extra_sdkinfo ...">,False

...

NOTE: FOO:<LogRecord : BitBake.Main , ... sstate - build - populate_sdk_ext ...">,False

NOTE: FOO:<bb.build.TaskSucceeded object at 0x7f94e7f5f358>, True

é

Gotchas and Resources

44

Gotchas

• Event content is very flexible, which both good and bad

• If you rely on specific events, you may want to have a unit test to insure that the

event content does not change on you

• Not all events have full or consistent data

• Some of the data in the events is not always consistent or complete

• The Toaster event handlers in fact sometimes need to fall back to some trial and

error to resolve that data

• One example is that for some events, the names for native and/or SDK tasks are

expected to have a “virtual:native[sdk]:” prefix, but that prefix is sometimes missing

and must be deduced

• You can examine Toaster’s “buildinfohelper.py” for examples and guidance

• The event data is buffered to not block bitbake, so it may take and extra

few minutes before the data is ready (so do not shut down Toaster!)

45

Resources

• Source code and example event database

• This is available as part of the Yocto Project Developer Day Advanced Class

https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017,

• https://wiki.yoctoproject.org/wiki/DevDay_US_2017

• Here is the Toaster documentation, and Youtube video!

• http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-

manual.html#toaster-manual-start

• Here is a Youtube video on Toaster

• https://youtu.be/BlXdOYLgPxA

• Here is the Toaster email list

• toaster@yoctoproject.org

https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://wiki.yoctoproject.org/wiki/DevDay_US_2017
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
https://youtu.be/BlXdOYLgPxA
https://youtu.be/BlXdOYLgPxA
mailto:toaster@yoctoproject.org

46

Resources (2)

• Basic information about bitbake UI’s
• http://elinux.org/Bitbake_Cheat_Sheet

• Here is design information on the event model for Toaster
• https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster

• Here is the original design information on Toaster and bitbake

communication
• https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications

http://elinux.org/Bitbake_Cheat_Sheet
http://elinux.org/Bitbake_Cheat_Sheet
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications

Questions and Answers

What data do you want/need?

What analytics use cases do you want to solve?

Thank you for your

participation!

