
BitRot detection in GlusterFS

Venky Shankar
Gaurav Garg

We are, Gluster developers at Red Hat

... participate in meetups, open source events

... hang out on #freenode: gluster, gluster-dev
 nick: overclk, ggarg
... interact with community: gluster-devel@gluster.org
 gluster-users@gluster.org

mailto:gluster-devel@gluster.org
mailto:gluster-users@gluster.org

OK, enough. Let’s get started...

GlusterFS Quick Tour

Where’s my data?

● Distributed
● Local filesystem (brick)

○ XFS
○ EXT3, EXT4
○ BTRFS

● Prerequisite
○ POSIX compatible
○ Xattr support

Understanding data corruption

Corruption?
How ?

● Direct “brick” manipulation
○ Script bug
○ Admin
○ Malicious

Corruption?
How ?

(cont..)

● Silent corruption
○ Disk itself

■ Firmware bug
■ Mechanical wear
■ Ageing

Illustration

Solution: Integrity checks

Integrity Check
Consistency

● Track data modifications
○ Checksum (signature)
○ Persistent

● Verify during access
○ Recompute and check

● Repair if corrupted

Enough of theory, show me how it’s
done.

Implementation
Constraints on choices

● Big fat-file story
● Deployments

○ Distribute + Replicate
○ Stripe, now [3.7+] sharding
○ Erasure coded

Implementation
Constraints on choices (cotd..)

● In-band data signing
○ Costly
○ RMW cycle
○ Degraded I/O performance

● Verification
○ “Ditto”

Implementation
Details

● Out-of-band data signing
○ Daemon
○ Asynchronous

■ Policy
■ Strong hash (reason ?)

● Verification
○ Daemon (scrubber)
○ On-demand
○ Pre-scrubbed

Implementation
Details (cotd..)

● Object versioning
○ Versioned upon modification
○ Versioning xattr (64 bit)
○ Reflect “object state”

● Signature
○ xattr
○ Attached to a “version”

Implementation
Details (cotd..)

● Integrity checking
○ Periodic

■ daily, weekly, etc..
○ Filesystem scan

■ Signature mismates
■ Matching version

○ QoS
■ Controlled crunching

● Corrupted objects
○ Denies access (EIO)
○ Repairable

■ Replica, Codes

Use cases

Use Cases
● Small files
● Long lived data

○ Archival storage

○ WORM workload

Future

● Replica consistency
● Metadata checksumming
● Offloading

○ BTRFS
● Sharding adaption
● GlusterFS 4.0 [Interesting!]

○ In-band (weaker hash)
○ Checksum everything
○ Default
○ Lost (phantom) writes

3.7

● Bitrot detection
● No recovery
● In comes sharding

3.7.2

● Recovery support

3.7.4

● Bug fixes
● Scrub status

3.8

● Sharding ready
● Bitrot adaption

4.0

● Hell of a change
● Sharding by default
● Checksum everything

Q & A

