

akass@ + dmi@

Building a Robust Analytics Platform

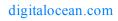
with an open-source stack

What's coming up:

- 1) DigitalOcean a company background
- 2) Data @ DigitalOcean
- 3) The Big Data Tech Stack @ DO
- 4) Use-cases + Demo

A Cloud Hosting Company for Software Developers.

- 4 years old



- 4 years old
- 12 Data Centers globally

- 4 years old
- 12 Data Centers globally
- Over 30 Million VMs created

- 4 years old
- 12 Data Centers globally
- Over 30 Million VMs created
- In 196 Countries

- 4 years old
- 12 Data Centers globally
- Over 30 Million VMs created
- In 196 Countries
- 700K Developer Users

- 4 years old
- 12 Data Centers globally
- Over 30 Million VMs created
- In 196 Countries
- 700K Developer Users
- 30K Developer Teams

Data @ DO - Participating Teams

- Data & Analytics ("DnA" Analysts + Data Scientists/Engineering)
 - (Alex & Dao live here)
- Platform/Infrastructure Engineering
- Product Engineering
- Security

Data @ DO

- Product Usage

Data @ DO - Product Usage

- Product Revenue Forecasting
- Churn Prediction
- User Segmentation
- Beta product uses and product cannibalization
- Support Team Efficacy

Data @ DO - Product Usage, v1.0

Pain Point 1: General Data Architecture

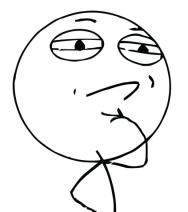
Huge, unwieldy SQL Tables \rightarrow Sloooow, monolithic, unadaptive

Pain Point 2: Upstream Dependencies

E.g. Monthly Invoicing \rightarrow Revenue analytics done on monthly basis

Data @ DO - Product Usage, v2.0

Revision 1: General Data Architecture



Microservices + Kafka pass application-level events \rightarrow Faster and more robust, but *teams must build their own consumers*.

Revision 2: Active Downstream Consumption

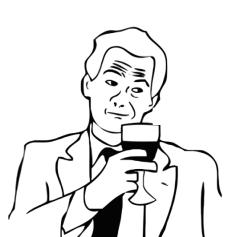
E.g. Granular Billable Events \rightarrow Daily, hourly, even near-RT processing of revenue for ingestion into analysis

Data @ DO

- Product Usage
- Sales/Marketing Leads

Data @ DO - Sales/Marketing Leads

Problem:



- User behavioral data lives in AWS Redshift
- User metadata lives in MySQL on DO's cloud

Data @ DO - Sales/Marketing Leads

Problem:

- User behavioral data lives in AWS Redshift
- User metadata lives in MySQL on DO's cloud

Solution:

1

- Migrate warehousing to our own cloud so that all data stays on-premise

Data @ DO

- Product Usage
- Sales/Marketing Leads
- Infrastructure

Data @ DO - Infrastructure

Problem - nay - <u>Conundrum</u>:

VMS

Data @ DO - Infrastructure

Problem - nay - Conundrum:

VMS

Data @ DO - Infrastructure

Problem - nay - Conundrum:

VMS

Data @ DO - Infrastructure

Problem - nay - Conundrum:

Data @ DO - Infrastructure

Problem - nay - Conundrum:

VMS

Data @ DO - Infrastructure

S.M.A.R.T.ctl

Problem - nay - Conundrum:

VMS

Data @ DO - Infrastructure

S.M.A.R.T.ctl

Problem - nay - Conundrum:

- Every 5 minutes, our entire active VM fleet is polled for OS and HW data using Prometheus and other in-house scraping solutions
- Significant scale (too big for RDBMS), inherent silos

To recap:

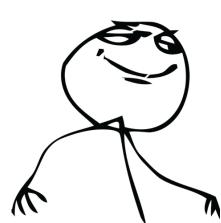
- Product Data in MySQL is **slow** and **isolated**
- Sales/Marketing data are **isolated** in different warehouses
- Infra data are **prohibitively large** and **isolated**

We need to reimagine how we process and store *everything*.

We need to reimagine how we process and store *everything*.

We need to reimagine how we process and store *everything*.

We need to reimagine how we process and store *everything*.



A Cloud Hosting Company for Software Developers.

A Cloud Hosting Company = We have cloud infrastructure.

A Cloud Hosting Company = We have cloud infrastructure.

= We can build our own big data environment.

A Cloud Hosting Company = We have cloud infrastructure.

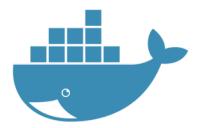
= We can build our own big data environment.

The DO Big Data Stack

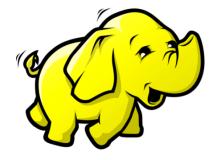
1. Distributed Systems Management

Distributed Systems Management
 Parallel Compute

3. Standardized Compute Environments



- 1. Distributed Systems Management
- 2. Parallel Compute
- 3. Standardized Compute Environments
- 4. Distributed Data Warehousing



- 1. Distributed Systems Management
- 2. Parallel Compute
- 3. Standardized Compute Environments
- 4. Distributed Data Warehousing
- 5. Distributed Streaming Events System

& kafka

- 1. Distributed Systems Management
- 2. Parallel Compute
- 3. Standardized Compute Environments
- 4. Distributed Data Warehousing
- 5. Distributed Streaming Events System
- 6. Massively Parallel Query Engine

- 1. Distributed Systems Management
- 2. Parallel Compute
- 3. Standardized Compute Environments
- 4. Distributed Data Warehousing
- 5. Distributed Streaming Events System
- 6. Massively Parallel Query Engine
- 7. Unifying IDE

elasticsearch

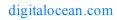
- 1. Distributed Systems Management
- 2. Parallel Compute
- 3. Standardized Compute Environments
- 4. Distributed Data Warehousing
- 5. Distributed Streaming Events System
- 6. Massively Parallel Query Engine
- 7. Unifying IDE

8. Logging at Scale

- 1. Distributed Systems Management
- 2. Parallel Compute
- 3. Standardized Compute Environments
- 4. Distributed Data Warehousing
- 5. Distributed Streaming Events System
- 6. Massively Parallel Query Engine
- 7. Unifying IDE
- 8. Logging at Scale

"Buzz."

- Hive



"Buzz."

Measuring Customer Satisfaction (CSAT) Integration with Internal Ticketing More transparency for Support Team

Subscribe to new Kafka topic

akass@ \$ python3 print_sample_event.py -t lifecycleevents
b'\n1\n\$21c19a1f-3f3f-497c-a0d6-ba197c5bbfe6\x12\x06\x08\x8f\xa1\xaa\xc0\x05\x18\xfe\x01j\x
1e\x10\xe6\x88B\x18\xac\xaajR\x14\x10\xe6\x88B\x1a\x06\x08\xd1\xf3\xda\xba\x05"\x06\x08\x8f
\xa1\xaa\xc0\x05'

Subscribe to new Kafka topic **Prototype reading of Kafka data within a Spark-enabled Jupyter Notebook**

In [5]: import lifecycle_events_pb2
from protobuf_to_dict import protobuf_to_dict

event = lifecycle_events_pb2.Event()

```
In [6]: def decoder(s):
    """ Decode the object as bytes"""
    if s is None:
        return None
    return event.FromString(s)
```


Subscribe to new Kafka topic
Prototype reading of Kafka data within a Spark-enabled Jupyter Notebook
Update Spark Docker container to include new modules and configurations, if necessary

&& tar xf protobuf-\$PROTOBUF_VERSION.tar.gz

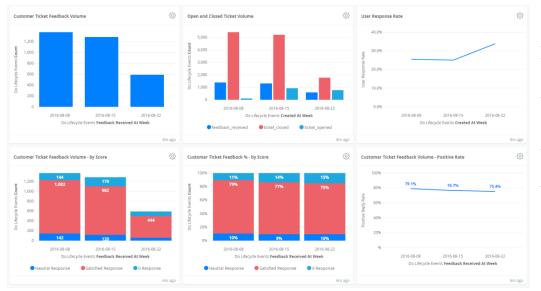
COPY autogen.sh /protobuf-\$PROTOBUF_VERSION/

RUN cd /protobuf=\$PROTOBUF_VERSION && ./autogen.sh \ && ./configure --prefix=/usr && make install \ && cd / && rm /protobuf=\$PROTOBUF_VERSION.tar.gz \ && ./Anaconda3=\$ANACONDA_VERSION-Linux-x86_64.sh -b -p /opt/anaconda3 \ && rm Anaconda3=\$ANACONDA_VERSION-Linux-x86_64.sh \ && pip install protobuf==3.0.0 kafka-python protobuf3-to-dict \$ cat spark-defaults.conf | grep docker
spark.mesos.executor.docker.image
docker.internal.digitalocean.com/platform/spark:1929b8d

```
Use Case 1: A New ETL Pipeline for
        stream = Stream Support Ticket Events
             [topic] Subscribe to new Kafka topic
              Prototype reading of Kafka data within a Spark-
                        enabled Jupyter Notebook
                    Update Spark Docker container to include new event data(x[1]))
                        modules and configurations, if necessary
         def savePay Write Spark script & deploy onto Mesos
Active Frameworks
                                                                         Find...
                                                                 Active
                                                                                      Max
```

ID V	Host	User	Name	Role	Principal	Tasks	CPUs	GPUs	Mem	Disk	Share	
	test-dna-kafka- lifecycle.nyc3.internal.digitalocean.com	root	product_lifecycle_etl	spark		1	8	0	4.4 GB	0 B	0.150%	

raw_data.foreachRDD(savePayloads)
return stream



Subscribe to new Kafka topic Prototype reading of Kafka data within a Sparkenabled Jupyter Notebook Update Spark Docker container to include new modules and configurations, if necessary Write Spark script & deploy onto Mesos Analyze!

Use Case 2: Billable Data, from Months to Minutes

Reminder:

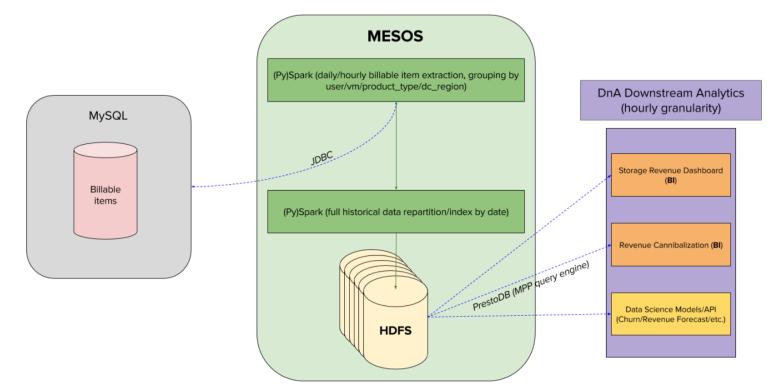
Pain Point 2: Upstream Dependencies

E.g. Monthly Invoicing \rightarrow Revenue analytics done on monthly basis

Revision 2: Active Downstream Consumption

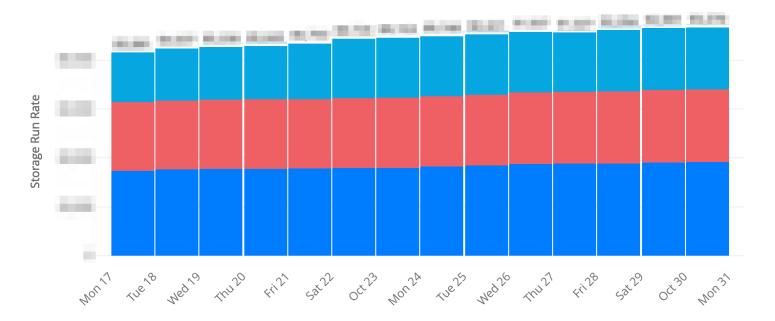
Goal \rightarrow Increase temporal granularity to **daily**, **hourly**, **even near-RT** processing of revenue for ingestion into analysis

Use Case 2: Billable Data, from Months to Minutes



Use Case 2: Billable Data, from Months to Minutes

Block Storage GA: Storage Run Rate, by Compute Spend: Billable Users



Real-World problem:

- many different drive models out in fleet...

Real-World problem:

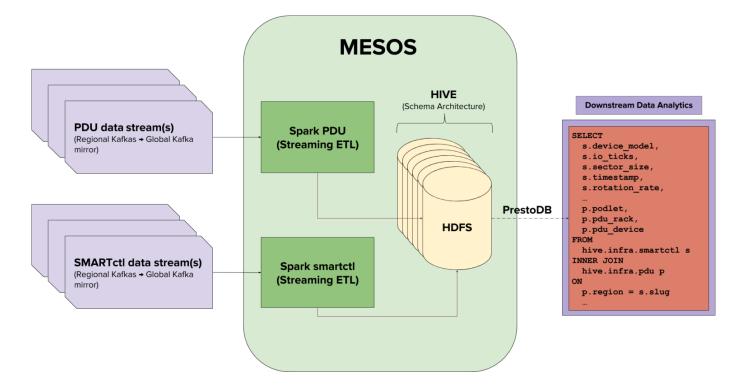
- many different drive models out in fleet...

- how to predict performance stability/failures with consistency?

Solution:

1) Measure PDU patterns & fluctuations on a *podlet/rack/device level*

- 2) Join to smartctl data to get vendor/drive-specific metadata
- 3) Mine for outliers to help DC teams react quicker to anomalies



Use Cases in Action:

Let's have a DEMO...

Use Cases in Action:

Let's have a DEMO...



Lessons learned from work thus far...

- Jupyter was indispensable for prototyping Spark + Kafka interactively

- Jupyter was indispensable for prototyping Spark + Kafka interactively
- Spark image containerization \rightarrow consistency across Mesosphere

- Jupyter was indispensable for prototyping Spark + Kafka interactively
- Spark image containerization \rightarrow consistency across Mesosphere
- Multiple Docker images \rightarrow developmental flexibility

- Jupyter was indispensable for prototyping Spark + Kafka interactively
- Spark image containerization \rightarrow consistency across Mesosphere
- Multiple Docker images \rightarrow developmental flexibility
- Presto DB \rightarrow significantly improved querying efficiency:
 - Naturally worked well with parallel data-stores on HDFS
 - Also improved RDBMS data retrieval through parallelization

- Jupyter was indispensable for prototyping Spark + Kafka interactively
- Spark image containerization \rightarrow consistency across Mesosphere
- Multiple Docker images \rightarrow developmental flexibility
- Presto DB \rightarrow significantly improved querying efficiency:
 - Naturally worked well with parallel data-stores on HDFS
 - Also improved RDBMS data retrieval through parallelization
- Laying pipelines to connect Kafka to Spark to HDFS was challenging;

- Jupyter was indispensable for prototyping Spark + Kafka interactively
- Spark image containerization \rightarrow consistency across Mesosphere
- Multiple Docker images \rightarrow developmental flexibility
- Presto DB \rightarrow significantly improved querying efficiency:
 - Naturally worked well with parallel data-stores on HDFS
 - Also improved RDBMS data retrieval through parallelization
- Laying pipelines to connect Kafka to Spark to HDFS was challenging; **tuning** everything was often even harder!

Recapping...

Recapping...

1) Consolidation/Centralization of data from across DO

Consolidation/Centralization of data from across DO Anyone can build reports/analyses

 Consolidation/Centralization of data from across DO *Anyone* can build reports/analyses
 Faster Reporting, Better Granularity

- Consolidation/Centralization of data from across DO Anyone can build reports/analyses
- 2) Faster Reporting, Better Granularity
- 3) Tight coupling with the other engineering groups

- Consolidation/Centralization of data from across DO Anyone can build reports/analyses
- 2) Faster Reporting, Better Granularity
- 3) Tight coupling with the other engineering groups
- 4) Modern stack allows massive scale with small headcount

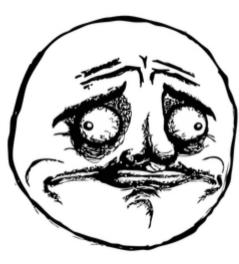
Gazing into the **Future**...

digitalocean.com

- Better inform hardware acquisition costs with detailed machine performance metrics.

- Better inform hardware acquisition costs with detailed machine performance metrics.
- Profile hypervisors by usage to optimize how VMs are allocated to particular racks.

- Better inform hardware acquisition costs with detailed machine performance metrics.
- Profile hypervisors by usage to optimize how VMs are allocated to particular racks.
- Beta-test/prototype/dogfood future products.



Questions?

digitalocean.com

Thank you!

