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What’s coming up:
1) DigitalOcean - a company background

2) Data @ DigitalOcean

3) The Big Data Tech Stack @ DO

4) Use-cases + Demo
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What is DigitalOcean?
A Cloud Hosting Company for Software Developers.

- 4 years old
- 12 Data Centers globally
- Over 30 Million VMs created
- In 196 Countries
- 700K Developer Users
- 30K Developer Teams
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- Data & Analytics (“DnA” - Analysts + Data Scientists/Engineering)

- (Alex & Dao live here)

- Platform/Infrastructure Engineering

- Product Engineering

- Security

Data @ DO - Participating Teams



digitalocean.com

Data @ DO

- Product Usage



- Product Revenue Forecasting
- Churn Prediction
- User Segmentation
- Beta product uses and product cannibalization
- Support Team Efficacy

Data @ DO - Product Usage
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Data @ DO - Product Usage, v1.0

Pain Point 1:  General Data Architecture

Huge, unwieldy SQL Tables → Slooooow, monolithic, unadaptive 

Pain Point 2:  Upstream Dependencies

E.g. Monthly Invoicing → Revenue analytics done on monthly basis 
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Data @ DO - Product Usage, v2.0

Revision 1:  General Data Architecture

Microservices + Kafka pass application-level events → 
Faster and more robust, but teams must build their own consumers.

Revision 2:  Active Downstream Consumption

E.g. Granular Billable Events →  Daily, hourly, even near-RT processing 
of revenue for ingestion into analysis
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Data @ DO

- Product Usage

- Sales/Marketing Leads



Problem:

- User behavioral data lives in AWS Redshift 

- User metadata lives in MySQL on DO’s cloud

Data @ DO - Sales/Marketing Leads
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Problem:

- User behavioral data lives in AWS Redshift 

- User metadata lives in MySQL on DO’s cloud

Solution:

- Migrate warehousing to our own cloud so that all data stays on-premise

Data @ DO - Sales/Marketing Leads
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Data @ DO

- Product Usage

- Sales/Marketing Leads

- Infrastructure 



Problem - nay - Conundrum:

- Every 5 minutes, our entire active VM fleet is polled for OS and HW data 
using Prometheus and other in-house scraping solutions 

Data @ DO - Infrastructure
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Problem - nay - Conundrum:

- Every 5 minutes, our entire active VM fleet is polled for OS and HW data 
using Prometheus and other in-house scraping solutions 

- Significant scale (too big for RDBMS), inherent silos

Data @ DO - Infrastructure

digitalocean.com
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We need to reimagine how we process 
and store everything.

To recap:
- Product Data in MySQL is slow and isolated
- Sales/Marketing data are isolated in different warehouses
- Infra data are prohibitively large and isolated
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Use Case 1:  A New ETL Pipeline for 
Support Ticket Events

Measuring Customer Satisfaction (CSAT)
Integration with Internal Ticketing
More transparency for Support Team
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Use Case 1:  A New ETL Pipeline for 
Support Ticket Events

Subscribe to new Kafka topic
Prototype reading of Kafka data within a Spark-enabled 

Jupyter Notebook
Update Spark Docker container to include new modules 

and configurations, if necessary

$ cat spark-defaults.conf | grep docker
spark.mesos.executor.docker.image  
docker.internal.digitalocean.com/platform/spark:1929b8d



digitalocean.com

Use Case 1:  A New ETL Pipeline for 
Support Ticket Events

Subscribe to new Kafka topic
Prototype reading of Kafka data within a Spark-

enabled Jupyter Notebook
Update Spark Docker container to include new 

modules and configurations, if necessary
Write Spark script & deploy onto Mesos



digitalocean.com

Use Case 1:  A New ETL Pipeline for 
Support Ticket Events

Subscribe to new Kafka topic
Prototype reading of Kafka data within a Spark-

enabled Jupyter Notebook
Update Spark Docker container to include new 

modules and configurations, if necessary
Write Spark script & deploy onto Mesos
Analyze!



digitalocean.com

Use Case 2:  Billable Data, from Months 
to Minutes

Reminder:

Pain Point 2:  Upstream Dependencies

E.g. Monthly Invoicing → Revenue analytics done on monthly basis 

Revision 2:  Active Downstream Consumption

Goal →  Increase temporal granularity to daily, hourly, even near-RT processing of revenue for 
ingestion into analysis
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Use Case 2:  Billable Data, from Months 
to Minutes



Use Case 3: Power Failure Detection + 
PDU Clustering

Real-World problem: 
- many different drive models out in fleet…
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Real-World problem: 
- many different drive models out in fleet…

- how to predict performance stability/failures with consistency?

Use Case 3: Power Failure Detection + 
PDU Clustering
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Use Case 3: Power Failure Detection + 
PDU Clustering

Solution: 

1) Measure PDU patterns & fluctuations on a podlet/rack/device level

2) Join to smartctl data to get vendor/drive-specific metadata

3) Mine for outliers to help DC teams react quicker to anomalies

digitalocean.com
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Use Case 3: Power Failure Detection + 
PDU Clustering
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Use Cases in Action:

Let’s have a DEMO...
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Use Cases in Action:
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Lessons learned from work thus far...



Lessons Learned (a small sample thus far)

- Jupyter was indispensable for prototyping Spark + Kafka interactively

digitalocean.com



Lessons Learned (a small sample thus far)

- Jupyter was indispensable for prototyping Spark + Kafka interactively

- Spark image containerization à consistency across Mesosphere

digitalocean.com



Lessons Learned (a small sample thus far)

- Jupyter was indispensable for prototyping Spark + Kafka interactively

- Spark image containerization à consistency across Mesosphere

- Multiple Docker images à developmental flexibility

digitalocean.com



Lessons Learned (a small sample thus far)

- Jupyter was indispensable for prototyping Spark + Kafka interactively

- Spark image containerization à consistency across Mesosphere

- Multiple Docker images à developmental flexibility

- Presto DB à significantly improved querying efficiency:
- Naturally worked well with parallel data-stores on HDFS
- Also improved RDBMS data retrieval through parallelization

digitalocean.com



Lessons Learned (a small sample thus far)

- Jupyter was indispensable for prototyping Spark + Kafka interactively

- Spark image containerization à consistency across Mesosphere

- Multiple Docker images à developmental flexibility

- Presto DB à significantly improved querying efficiency:
- Naturally worked well with parallel data-stores on HDFS
- Also improved RDBMS data retrieval through parallelization

- Laying pipelines to connect Kafka to Spark to HDFS was challenging;

digitalocean.com



Lessons Learned (a small sample thus far)

- Jupyter was indispensable for prototyping Spark + Kafka interactively

- Spark image containerization à consistency across Mesosphere

- Multiple Docker images à developmental flexibility

- Presto DB à significantly improved querying efficiency:
- Naturally worked well with parallel data-stores on HDFS
- Also improved RDBMS data retrieval through parallelization

- Laying pipelines to connect Kafka to Spark to HDFS was challenging; tuning
everything was often even harder!

digitalocean.com
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1) Consolidation/Centralization of data from across DO

Anyone can build reports/analyses

2) Faster Reporting, Better Granularity

3) Tight coupling with the other engineering groups

4) Modern stack allows massive scale with small headcount

Recapping…
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Gazing into the Future...



Future Work
- Hardware failure detection forecasting to help the DC team perform predictable 

maintenance.  
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Future Work
- Hardware failure detection forecasting to help the DC team perform predictable 

maintenance.  

- Better inform hardware acquisition costs with detailed machine performance metrics.

- Profile hypervisors by usage to optimize how VMs are allocated to particular racks.

- Beta-test/prototype/dogfood future products.
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Questions?



Thank you!


