
Building and Running 
a Solr-as-a-Service
SHAI ERERA

IBM



Who Am I?

• Working at IBM – Social Analytics & Technologies

• Lucene/Solr committer and PMC member

• http://shaierera.blogspot.com

• shaie@apache.org

http://shaierera.blogspot.com/
mailto:shaie@apache.org


Background

• More and more teams develop solutions with Solr

• Different use cases: search, analytics, key-value store…

• Many solutions become cloud-based

• Similar challenges deploying Solr in the cloud

• Security, cloud infrastructure

• Solr version upgrades

• Data center awareness / multi-DC support

• …



Mission

Provide a cloud-based service for managing hosted Solr instances

• Let users focus on indexing, search, collections management

• NOT worry about cluster health, deployment, high-availability …

• Support the full Solr API

• Adapt Solr to the challenging cloud environment



Developing Cloud-Based Software is Fun!
• A world of micro-services: Auth, Logging, Service Discovery, Uptime, PagerDuty …

• Infrastructure decisions

• Virtual Machines or Containers?

• Local or Remote storage?

• Single or Multi Data Center support?

• Software development and maintenance challenges

• How to test the code?

• How to perform software upgrades?

• How to migrate the infrastructure?

• Stability/Recovery – “edge” cases are not so rare

* Whatever can go wrong, will go wrong!



Multi-Tenancy

• A cluster per tenant

• Each cluster is isolated from other clusters

• Resources

• Collections

• Configurations

• ZK chroot

• Different Solr versions…

• Every tenant can create multiple Solr cluster instances

• Department indexes, dev/staging/production …



SolrCloud 101

Shard1 Shard2

Leader

Replica

Overseer
ZooKeeper



StorageStorageStorageStorageStorage

Architecture

Marathon, Mesos, Docker

Software

Upgrades

Lifecycle

Management

Routing

Solr

Monitor

Marathon

Spray

…

Eureka

Uptime

Graphite

Kibana

Zuul

ZooKeeper

WS3 

(ObjectStore)

S
e
a
rc

h
 S

e
rv

ic
e

C
lo

u
d

 In
fra

s
tru

c
tu

re

Solr C1N1

Solr C3N1

Solr C2N1

Solr C3N2

Solr C1N2

Solr C2N2

Solr C3N3

Solr C3N4



Sizing Your Cluster
• A Solr cluster’s size is measured in units

• Each unit translates to memory, storage and CPU resources

• A size-7 cluster has 7X more resources than a size-1

• All collections have the same number of shards and a replicationFactor of 2

• Bigger clusters also mean sharding and more Solr nodes

• Cluster sizes are divided into (conceptual) tiers

• Tier1 = 1 shard, 2 nodes

• Tier2 = 2 shards, 4 nodes

• Tiern = 2n-1 shards, 2n nodes

• Example, a size-16 (Tier3) cluster has

• 4 shards, 2 replicas each, 8 nodes

• Total 32 cores

• Total 64 GB (effective) memory

• Total 512 GB (effective) storage



Software Upgrades
• Need to upgrade Solr version, but also own code

• Software upgrade means a full Docker image upgrade (even if only replacing a single .jar)

• SSH and upgrade software forbidden (security)

• Important: no down-time

• Data-replication Upgrade

• Replicate data to new nodes

• Expensive: a lot of data is copied around

• Useful when resizing a cluster, migrating data center etc.

• In-place Upgrade

• Relies on Marathon’s pinning of applications to host

• Very fast: re-deploy a Marathon application + Solr restart; No data replication

• The default upgrade mechanism, unless a data-replication is needed



Software Upgrades

• Start with 2 containers on version X

• Create 2 additional containers on version Y

• Add replicas on new Solr nodes

• Re-assign shard leadership to new replicas

• Route traffic to the new nodes

• Delete old containers

Data-Replication

• Start with 2 containers on version X

• Update one container’s Marathon application 

configuration to version Y

• Marathon re-deploys the applications on the 

same host

• Wait for Solr to come up and report “healthy”

• Repeat with second container

In-Place



Resize Your Cluster
• As your index grows, you will need to increase the available resources to your cluster

• Resizing a cluster means allocating bigger containers (RAM, CPU, Storage)

• A cluster resize behaves very similar to a data-replication upgrade

• New containers with appropriate size are allocated and the data is replicated to them

• Resize across tiers is a bit different

• More containers are allocated

• Each new container is potentially smaller than the previous ones, but overall you have more resources

• Simply replicating data isn’t possible – index may not fit in the new containers

• Before the resize is carried on, shards are split

• Each shard eventually lands on its own container



Collection Configuration Has Too Many Options
• Lock factory must stay “native”

• No messing with uLog

• Do not override dataDir!

• No XSLT

• Only Classic/Managed schema factory allowed

• No update listeners

• No custom replication handler

• No JMX



Replicas Housekeeping
• In some cases containers are re-spawned on a different host than where their data is located

• Missing replicas

• Solr does not automatically add replicas to shards that do not meet their replicationFactor

• Add missing replicas to those shards

• Dead replicas

• Replicas are not automatically removed from CLUSTERSTATUS

• When a shard has enough ACTIVE replicas, delete those “dead” replicas

• Extra replicas

• Many replicas added to shards (“Stuck Overseer”)

• Cluster re-balancing

• Delete “extra” replicas from most occupied nodes



Cluster Balancing
• In some cases, Solr nodes may host more replicas than others

• Cluster resize: shard splitting does not distribute all sub-shards’ replicas across all nodes

• Fill missing replicas: always aim to achieve HA

• Cluster balancing involves multiple operations

• Find collections with replicas of more than one shard on same host

• Find candidate nodes to host those replicas (least occupied nodes #replicas-wise)

• Add additional replicas of those shards on those nodes

• Invoke the “delete extra replicas” procedure to delete the replicas on the overbooked node



More Solr Challenges
• CLOSE_WAIT (SOLR-9290)

• DOWN replicas

• <int name="maxUpdateConnections">10000</int>

• <int name="maxUpdateConnectionsPerHost">100</int>

Fixed in 5.5.3

• “Stuck” Overseer

• Various tasks accumulated in Overseer queue

• Cluster is unable to get to a healthy state (missing replicas)

Many Overseer changes in recent releases + CLOSE_WAIT fix



More Solr Challenges
• Admin APIs are too powerful (and irrelevant)

• Users need not worry about Solr cluster deployment aspects

Block most admin APIs (shard split, leaders handling, replicas management, roles…)

Create collection with minimum set of parameters: configuration and collection names

• Collection Configuration API

• Users do not have access to ZK

API to manage a collection’s configuration in ZK



Running a Marathon (successfully!)
• Each Solr instance is deployed as a Marathon application

• Needed for pinning an instance to an agent/host

• Marathon’s performance drops substantially when managing thousands of applications

• Communication errors, timeouts

• Simple tasks take minutes to complete

• Marathon Sprayer

• Manage multiple Marathon clusters (but same Mesos cluster)

• Track which Marathon hosts a Solr cluster’s applications

• Think positive: errors and timeouts don’t necessarily mean failure!



Current Status
• Two years in production, currently running Solr 5.5.3

• Usage / Capacity

• 450 Baremetal servers

• 3000+ Solr clusters

• 6000+ Solr nodes

• 300,000+ API calls per day

• 99.5% uptime



Questions?


