
Search	
 |	
 Discover	
 |	
 Analyze	

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Introduction to SolrCloud
ApacheCon, April 7, 2014
Timothy Potter

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

SolrCloud tag cloud

created using Wordle.net

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

My SolrCloud Experience

•  Currently, working on scaling up to a 200+ node deployment at
LucidWorks

•  Operated 36 node cluster in AWS for Dachis Group (1.5 years ago,
18 shards ~900M docs)

•  Contributed several tests and patches to the code base

•  Built a Fabric/boto framework for deploying and managing a cluster
in EC2

•  Co-author of Solr In Action; wrote CH 13 which covers SolrCloud

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

What is SolrCloud?

Subset of optional features in Solr to enable and
simplify horizontal scaling a search index using

sharding and replication.

Goals
scalability, performance, high-availability,

simplicity, and elasticity

Caveat
Still evolving ... try to stay up-to-date with recent releases

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Terminology

•  ZooKeeper: Distributed coordination service that provides centralized
configuration, cluster state management, and leader election

•  Node: JVM process bound to a specific port on a machine; hosts the LWS
core application

•  Collection: Search index distributed across multiple nodes; each
collection has a name, shard count, and replication factor

•  Replication Factor: Number of copies of a document in a collection
•  Shard: Logical slice of a collection; each shard has a name, hash range,

leader, and replication factor. Documents are assigned to one and only
one shard per collection using a hash-based document routing strategy.

•  Replica: LWS index that hosts a copy of a shard in a collection; behind the
scenes, each replica is implemented as a Solr core

•  Leader: Replica in a shard that assumes special duties needed to support
distributed indexing in Solr; each shard has one and only one leader at
any time and leaders are elected using ZooKeeper

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

SolrCloud High-level Architecture

logstash4solr collection is distributed into 2 shards across 4 nodes with replication factor 2

Java	
 VM	
 (J2SE	
 v.	
 7)	

JeHy	
 (node	
 1)	
 on	
 port:	
 8983	

Solr	
 Web	
 app	

logstash4solr	

shard1	
 -­‐	
 Leader	

JeHy	
 (node	
 2)	
 on	
 port:	
 8984	

logstash4solr	

shard1	
 -­‐	
 Replica	

Java	
 VM	
 (J2SE	
 v.	
 7)	

Solr	
 Web	
 app	

Java	
 VM	
 (J2SE	
 v.	
 7)	

JeHy	
 (node	
 3)	
 on	
 port:	
 8985	

Solr	
 Web	
 app	

logstash4solr	

shard2	
 -­‐	
 Leader	

JeHy	
 (node	
 4)	
 on	
 port:	
 8986	

logstash4solr	

shard2	
 -­‐	
 Replica	

Java	
 VM	
 (J2SE	
 v.	
 7)	

Solr	
 Web	
 app	

Zookeeper1	

Zookeeper2	

Zookeeper3	

ZooKeeper	
 Ensemble	

Leader	

Elec2on	

Replica2on	

Replica2on	

Sharding	

Centralized	

Configura2on	

Management	

REST	
 Web	
 Services	

XML	
 /	
 JSON	
 /	
 HTTP	

Millions	
 of	

Documents	

Millions	
 of	

Users	

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Collection == Distributed Index

A collection is a distributed index defined by:
–  named configuration stored in ZooKeeper
–  number of shards: documents are distributed across N partitions of

the index
–  document routing strategy: how documents get assigned to shards
–  replication factor: how many copies of each document in the

collection

Collections API:	

curl	
 "http://localhost:8983/solr/admin/collections?	
 	
 	
 	

	
 	
 	
 action=CREATE&name=logstash4solr&replicationFactor=2&	

	
 	
 	
 	
 	
 	
 	
 numShards=2&collection.configName=logs"	

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Demo

1.  Start-up bootstrap node with embedded ZooKeeper

2.  Add another shard

3.  Add some replicas

4.  Index some docs

5.  Distributed queries

6.  Knock-over a node, see cluster stay operational

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

ZooKeeper

•  Is a very good thing ... clusters are a zoo!
•  Centralized configuration management
•  Cluster state management
•  Leader election (shard leader and overseer)
•  Overseer distributed work queue
•  Live Nodes

–  Ephemeral znodes used to signal a server is gone

•  Needs 3 nodes for quorum in production

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

ZooKeeper: Centralized Configuration

•  Store config files in
ZooKeeper

•  Solr nodes pull config
during core initialization

•  Config sets can be “shared”
across collections

•  Changes are uploaded to
ZK and then collections
should be reloaded

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

ZooKeeper: State management

•  Keep track of live nodes /live_nodes znode
–  ephemeral nodes
–  ZooKeeper client timeout

•  Collection metadata and replica state in /clusterstate.json
–  Every core has watchers for /live_nodes and /clusterstate.json

•  Leader election
–  ZooKeeper sequence number on ephemeral znodes

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Sharding

•  Collection has a fixed number of shards
–  existing shards can be split

•  When to shard?
–  Large number of docs
–  Large document sizes
–  Parallelization during indexing and queries
–  Data partitioning (custom hashing)

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Document Routing

•  Each shard covers a hash-range

•  Default: Hash ID into 32-bit integer, map to range

•  Custom-hashing (example in a few slides)

•  Tri-level: app!user!doc

•  Implicit: no hash-range set for shards

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Distributed	
 Indexing	

View	
 of	
 cluster	
 state	
 from	
 Zk	

Shard	
 1	

Leader	

Node	
 1	
 Node	
 2	

Shard	
 2	

Replica	

Shard	
 2	

Leader	

Shard	
 1	

Replica	

Zookeeper	

CloudSolrServer	

“smart	
 client”	

1

2

4

tlog	
 tlog	

Get	
 URLs	
 of	
 current	
 leaders?	

35

shard1 range:!
80000000-ffffffff!

shard2 range:!
0-7fffffff!

1.  Get cluster state from ZK

2.  Route document directly to
leader (hash on doc ID)

3.  Persist document on durable
storage (tlog)

4.  Forward to healthy replicas

5.  Acknowledge write succeed
to client

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Shard	
 Leader	

•  Additional responsibilities during
indexing only! Not a master node

•  Leader is a replica (handles queries)

•  Accepts update requests for the shard

•  Increments the _version_ on the new or
updated doc

•  Sends updates (in parallel) to all replicas

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Replication

•  Why replicate?
–  High-availability
–  Load balancing

•  How does it work in SolrCloud?
–  Near-real-time, not master-slave
–  Leader forwards to replicas in parallel, waits for response
–  Error handling during indexing is tricky

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Distributed	
 Queries	

View	
 of	
 cluster	
 state	
 from	
 Zk	

Shard	
 1	

Leader	

Node	
 1	
 Node	
 2	

Shard	
 2	

Leader	

Shard	
 2	

Replica	

Shard	
 1	

Replica	

Zookeeper	

CloudSolrServer	

3

q=*:*	

Get	
 URLs	
 of	
 all	
 live	
 nodes	

4

2

Query	
 controller	

Or	
 just	
 a	
 load	
 balancer	
 works	
 too	

get	
 fields	

1

1.  Query client can be ZK aware or
just query thru a load balancer

2.  Client can send query to any
node in the cluster

3.  Controller node distributes the
query to a replica for each shard
to identify documents matching
query

4.  Controller node sorts the results
from step 3 and issues a second
query for all fields for a page of
results

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Overseer

•  What does it do?
–  Persists collection state change events to

ZooKeeper
–  Controller for Collection API commands
–  Ordered updates
–  One per cluster (for all collections);

elected using leader election

•  How does it work?
–  Asynchronous (pub/sub messaging)
–  ZooKeeper as distributed queue recipe
–  Automated failover to a healthy node
–  Can be assigned to a dedicated node

(SOLR-5476)

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

SolrCloud and CAP

•  A distributed system should be: Consistent, Available, and
Partition tolerant
–  CAP says pick 2 of the 3! (slightly more nuanced than that in reality)

•  SolrCloud favors consistency over write-availability (CP)
–  All replicas in a shard have the same data
–  Active replica sets concept (writes accepted so long as a shard has at

least one active replica available)

•  No tools to detect or fix consistency issues in Solr
–  Reads go to one replica; no concept of quorum
–  Writes must fail if consistency cannot be guaranteed (SOLR-5468)

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Scalability / Stability Highlights

•  All nodes in cluster perform indexing and execute
queries; no master node

•  Distributed indexing: No SPoF, high throughput via
direct updates to leaders, automated failover to new
leader

•  Distributed queries: Add replicas to scale-out qps;
parallelize complex query computations; fault-tolerance

•  Indexing / queries continue so long as there is 1 healthy
replica per shard

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Custom Hashing

{!
 "id" : ”httpd!2",!
 "level_s" : ”ERROR",!
 "lang_s" : "en",!
 ...!
},!

Hash:	

shardKey!docID	

shard1 range:!
80000000-ffffffff!

shard2 range:!
0-7fffffff!

Shard	
 1	

Leader	

Shard	
 2	

Leader	

•  Route documents to specific shards based on a shard key
component in the document ID
–  Send all log messages from the same system to the same shard

•  Direct queries to specific shards

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Custom Hashing Highlights

•  Co-locate documents having a common property in the
same shard
–  e.g. docs having IDs httpd!21 and httpd!33 will be in the same shard

•  Scale-up the replicas for specific shards to address high
query and/or indexing volume from specific apps

•  Not as much control over the distribution of keys
–  httpd, mysql, and collectd all in same shard

•  Can split unbalanced shards when using custom hashing

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Shard Splitting

•  Split range in half

Shard	
 1_1	

Leader	

Node	
 1	
 Node	
 2	

Shard	
 2	

Leader	

Shard	
 2	

Replica	

Shard	
 1_1	

Replica	

shard1_0 range:!
80000000-bfffffff!

shard2 range:!
0-7fffffff!

Shard	
 1_0	

Leader	

Shard	
 1_0	

Replica	

shard1_1 range:!
c0000000-ffffffff!

Shard	
 1	

Leader	

Node	
 1	
 Node	
 2	

Shard	
 2	

Leader	

Shard	
 2	

Replica	

Shard	
 1	

Replica	

shard1 range:!
80000000-ffffffff!

shard2 range:!
0-7fffffff!

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Collection Aliases

Indexing	

Client	
 1	

Indexing	

Client	
 2	

Indexing	

Client	
 N	
 ...	

logstash4solr	
 collec6on	
 	

Search	

Client	
 1	

Search	

Client	
 2	

Search	

Client	
 N	
 ...	

logstash4solr-­‐write	

collec6on	
 alias	
 	

logstash4solr-­‐read	

collec6on	
 alias	
 	

Update	
 requests	

Query	
 requests	

logstash4solr	
 collec6on	
 	

Queries continue to execute
against the logstash4solr collection
while the new one is building

Use the Collections API to
create a new collection named

logstash4solr2
and update the logstash4solr-write alias
 to direct writes to the new collection

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Other Features / Highlights

•  Near-Real-Time Search: Documents are visible within a second or so after

being indexed
•  Partial Document Update: Just update the fields you need to change on

existing documents
•  Optimistic Locking: Ensure updates are applied to the correct version of

a document
•  Transaction log: Better recoverability; peer-sync between nodes after

hiccups
•  HTTPS
•  Use HDFS for storing indexes
•  Use MapReduce for building index (SOLR-1301)

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

What’s	
 Next?	

•  Constantly hardening existing features
–  More Chaos monkey tests to cover tricky areas in the code
–  See Mark Miller’s ApacheCon talk: http://sched.co/1bsUCOQ

•  Large-scale performance testing; 1000’s of collections, 100’s of Solr
nodes, billions of documents

•  Splitting collection state into separate znodes (SOLR-5473)
•  Collection management UI (SOLR-4388)
•  Cluster deployment / management tools

–  My talk tomorrow: http://sched.co/1bsKUMn

•  Ease of use!
–  Please contribute to the mailing list, wiki, JIRA

Confiden6al	
 and	
 Proprietary	
 ©	
 Copyright	
 2013	

Wrap-­‐up	

•  LucidWorks: http://www.lucidworks.com
•  SiLK: http://www.lucidworks.com/lucidworks-silk/
•  Solr In Action: http://www.manning.com/grainger/
•  Connect: @thelabdude / tim.potter@lucidworks.com

Questions?

