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SolrCloud tag cloud 

created using Wordle.net 
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My SolrCloud Experience 

•  Currently, working on scaling up to a 200+ node deployment at 
LucidWorks 

•  Operated 36 node cluster in AWS for Dachis Group (1.5 years ago, 
18 shards ~900M docs) 

•  Contributed several tests and patches to the code base 

•  Built a Fabric/boto framework for deploying and managing a cluster 
in EC2 

•  Co-author of Solr In Action; wrote CH 13 which covers SolrCloud 
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What is SolrCloud? 

Subset of optional features in Solr to enable and 
simplify horizontal scaling a search index using  

sharding and replication. 
 

Goals 
scalability, performance, high-availability,  

simplicity, and elasticity 
 

Caveat 
Still evolving ... try to stay up-to-date with recent releases 
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Terminology 

•  ZooKeeper: Distributed coordination service that provides centralized 
configuration, cluster state management, and leader election 

•  Node: JVM process bound to a specific port on a machine; hosts the LWS 
core application 

•  Collection: Search index distributed across multiple nodes; each 
collection has a name, shard count, and replication factor  

•  Replication Factor: Number of copies of a document in a collection 
•  Shard: Logical slice of a collection; each shard has a name, hash range, 

leader, and replication factor. Documents are assigned to one and only 
one shard per collection using a hash-based document routing strategy.  

•  Replica: LWS index that hosts a copy of a shard in a collection; behind the 
scenes, each replica is implemented as a Solr core  

•  Leader: Replica in a shard that assumes special duties needed to support 
distributed indexing in Solr; each shard has one and only one leader at 
any time and leaders are elected using ZooKeeper  
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SolrCloud High-level Architecture 

logstash4solr collection is distributed into 2 shards across 4 nodes with replication factor 2 
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Collection == Distributed Index 

A collection is a distributed index defined by: 
–  named configuration stored in ZooKeeper 
–  number of shards: documents are distributed across N partitions of 

the index 
–  document routing strategy: how documents get assigned to shards 
–  replication factor: how many copies of each document in the 

collection 
 
Collections API:	
  
curl	
  "http://localhost:8983/solr/admin/collections?	
  	
  	
  	
  
	
  	
  	
  action=CREATE&name=logstash4solr&replicationFactor=2&	
  
	
  	
  	
  	
  	
  	
  	
  numShards=2&collection.configName=logs"	
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Demo 

1.  Start-up bootstrap node with embedded ZooKeeper 

2.  Add another shard 

3.  Add some replicas 

4.  Index some docs 

5.  Distributed queries 

6.  Knock-over a node, see cluster stay operational 
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ZooKeeper 

•  Is a very good thing ... clusters are a zoo! 
•  Centralized configuration management 
•  Cluster state management 
•  Leader election (shard leader and overseer) 
•  Overseer distributed work queue 
•  Live Nodes 

–  Ephemeral znodes used to signal a server is gone 

•  Needs 3 nodes for quorum in production 
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ZooKeeper: Centralized Configuration 

•  Store config files in 
ZooKeeper 

•  Solr nodes pull config 
during core initialization 

•  Config sets can be “shared” 
across collections 

•  Changes are uploaded to 
ZK and then collections 
should be reloaded 
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ZooKeeper: State management 

•  Keep track of live nodes /live_nodes znode 
–  ephemeral nodes 
–  ZooKeeper client timeout 

•  Collection metadata and replica state in /clusterstate.json 
–  Every core has watchers for /live_nodes and /clusterstate.json 

•  Leader election 
–  ZooKeeper sequence number on ephemeral znodes 
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Sharding 

•  Collection has a fixed number of shards 
–  existing shards can be split 

•  When to shard? 
–  Large number of docs 
–  Large document sizes 
–  Parallelization during indexing and queries 
–  Data partitioning (custom hashing) 
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Document Routing 

•  Each shard covers a hash-range 

•  Default: Hash ID into 32-bit integer, map to range 

•  Custom-hashing (example in a few slides) 

•  Tri-level: app!user!doc 

•  Implicit: no hash-range set for shards 
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Distributed	
  Indexing	
  

View	
  of	
  cluster	
  state	
  from	
  Zk	
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4
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Get	
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  of	
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35

shard1 range:!
80000000-ffffffff!

shard2 range:!
0-7fffffff!

1.  Get cluster state from ZK 

2.  Route document directly to 
leader (hash on doc ID) 

3.  Persist document on durable 
storage (tlog) 

4.  Forward to healthy replicas 

5.  Acknowledge write succeed 
to client 
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Shard	
  Leader	
  

•  Additional responsibilities during 
indexing only! Not a master node 

•  Leader is a replica (handles queries) 

•  Accepts update requests for the shard 

•  Increments the _version_ on the new or 
updated doc 

•  Sends updates (in parallel) to all replicas 
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Replication 

•  Why replicate? 
–  High-availability 
–  Load balancing 

•  How does it work in SolrCloud? 
–  Near-real-time, not master-slave 
–  Leader forwards to replicas in parallel, waits for response 
–  Error handling during indexing is tricky 
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Distributed	
  Queries	
  

View	
  of	
  cluster	
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  Zk	
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  a	
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  too	
  

get	
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1

1.  Query client can be ZK aware or 
just query thru a load balancer 

2.  Client can send query to any 
node in the cluster 

3.  Controller node distributes the 
query to a replica for each shard 
to identify documents matching 
query 

4.  Controller node sorts the results 
from step 3 and issues a second 
query for all fields for a page of 
results 
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Overseer 

•  What does it do? 
–  Persists collection state change events to 

ZooKeeper 
–  Controller for Collection API commands 
–  Ordered updates 
–  One per cluster (for all collections); 

elected using leader election 

•  How does it work? 
–  Asynchronous (pub/sub messaging) 
–  ZooKeeper as distributed queue recipe 
–  Automated failover to a healthy node 
–  Can be assigned to a dedicated node 

(SOLR-5476) 
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SolrCloud and CAP 

•  A distributed system should be: Consistent, Available, and 
Partition tolerant 
–  CAP says pick 2 of the 3! (slightly more nuanced than that in reality) 

•  SolrCloud favors consistency over write-availability (CP) 
–  All replicas in a shard have the same data 
–  Active replica sets concept (writes accepted so long as a shard has at 

least one active replica available) 

•  No tools to detect or fix consistency issues in Solr 
–  Reads go to one replica; no concept of quorum 
–  Writes must fail if consistency cannot be guaranteed (SOLR-5468) 
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Scalability / Stability Highlights 

•  All nodes in cluster perform indexing and execute 
queries; no master node 

•  Distributed indexing: No SPoF, high throughput via 
direct updates to leaders, automated failover to new 
leader 

•  Distributed queries: Add replicas to scale-out qps; 
parallelize complex query computations; fault-tolerance 

•  Indexing / queries continue so long as there is 1 healthy 
replica per shard 
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Custom Hashing 

{!
  "id" : ”httpd!2",!
  "level_s" : ”ERROR",!
  "lang_s" : "en",!
   ...!
},!

Hash:	
  
shardKey!docID	
  

shard1 range:!
80000000-ffffffff!

shard2 range:!
0-7fffffff!

Shard	
  1	
  
Leader	
  

Shard	
  2	
  
Leader	
  

•  Route documents to specific shards based on a shard key 
component in the document ID 
–  Send all log messages from the same system to the same shard 

•  Direct queries to specific shards 
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Custom Hashing Highlights 

•  Co-locate documents having a common property in the 
same shard 
–  e.g. docs having IDs httpd!21 and httpd!33 will be in the same shard 

•  Scale-up the replicas for specific shards to address high 
query and/or indexing volume from specific apps 

•  Not as much control over the distribution of keys 
–  httpd, mysql, and collectd all in same shard 

•  Can split unbalanced shards when using custom hashing 
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Shard Splitting 

•  Split range in half 

Shard	
  1_1	
  
Leader	
  

Node	
  1	
   Node	
  2	
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  2	
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Shard	
  2	
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Shard	
  1_1	
  
Replica	
  

shard1_0 range:!
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shard2 range:!
0-7fffffff!
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Leader	
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  1_0	
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  1	
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Node	
  1	
   Node	
  2	
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  2	
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  2	
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Shard	
  1	
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shard1 range:!
80000000-ffffffff!

shard2 range:!
0-7fffffff!
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Collection Aliases 

Indexing	
  
Client	
  1	
  

Indexing	
  
Client	
  2	
  

Indexing	
  
Client	
  N	
  ...	
  

logstash4solr	
  collec6on	
  	
  

Search	
  
Client	
  1	
  

Search	
  
Client	
  2	
  

Search	
  
Client	
  N	
  ...	
  

logstash4solr-­‐write	
  
collec6on	
  alias	
  	
  

logstash4solr-­‐read	
  
collec6on	
  alias	
  	
  

Update	
  requests	
  

Query	
  requests	
  

logstash4solr	
  collec6on	
  	
  

Queries continue to execute 
against the logstash4solr collection  
while the new one is building 

Use the Collections API to  
create a new collection named 

logstash4solr2 
and update the logstash4solr-write alias 
 to direct writes to the new collection 
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Other Features / Highlights 

 
 
 
•  Near-Real-Time Search: Documents are visible within a second or so after 

being indexed 
•  Partial Document Update: Just update the fields you need to change on 

existing documents 
•  Optimistic Locking: Ensure updates are applied to the correct version of 

a document 
•  Transaction log: Better recoverability; peer-sync between nodes after 

hiccups 
•  HTTPS 
•  Use HDFS for storing indexes 
•  Use MapReduce for building index (SOLR-1301) 
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What’s	
  Next?	
  

•  Constantly hardening existing features 
–  More Chaos monkey tests to cover tricky areas in the code 
–  See Mark Miller’s ApacheCon talk: http://sched.co/1bsUCOQ 

•  Large-scale performance testing; 1000’s of collections, 100’s of Solr 
nodes, billions of documents 

•  Splitting collection state into separate znodes (SOLR-5473) 
•  Collection management UI (SOLR-4388) 
•  Cluster deployment / management tools 

–  My talk tomorrow: http://sched.co/1bsKUMn 

•  Ease of use! 
–  Please contribute to the mailing list, wiki, JIRA 
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Wrap-­‐up	
  

•  LucidWorks: http://www.lucidworks.com 
•  SiLK: http://www.lucidworks.com/lucidworks-silk/ 
•  Solr In Action: http://www.manning.com/grainger/ 
•  Connect: @thelabdude / tim.potter@lucidworks.com 
 
 

Questions? 


