Near Real-Time Stream Processing Architectures

Anand Iyer
Senior Product Manager, Cloudera
aiyer@cloudera.com
Its 2015: Your CTO wants Real-Time

Why now? Complex Event Processing (CEP) is not a new concept.
Use Cases Across Industries

Credit Card & Monetary Transactions
Identify fraudulent transactions as soon as they occur.

Healthcare
Continuously monitor patient vital stats and proactively identify at-risk patients.

Retail
- Real-time in-store Offers and Recommendations.
- Email and marketing campaigns based on real-time social trends

Digital Advertising & Marketing
Optimize and personalize digital ads based on real-time information.

Consumer Internet, Mobile & E-Commerce
Optimize user engagement based on user’s current behavior. Deliver recommendations relevant “in the moment”

Manufacturing
- Identify equipment failures and react instantly
- Perform proactive maintenance.
- Identify product quality defects immediately to prevent resource wastage.

Security & Surveillance
Identify threats and intrusions, both digital and physical, in real-time.

Transportation & Logistics
- Real-time traffic conditions
- Tracking fleet and cargo locations and dynamic re-routing to meet SLAs
Operations on Sliding Windows

Easily define operations over a sliding window of data

Specify:
- Window length as multiple of micro-batch size
- Sliding step size

NOTE: Provide adequate memory to hold sliding window worth of data.
Maintain and update arbitrary state

`updateStateByKey(...)`
- Define initial state
- Provide state update function
- Continuously update with new information

Examples:
- Running count of words seen in text stream
- Per user session state from activity stream

Note:
Requires periodic check-pointing to fault-tolerant storage.
OSS options for Stream Processing

<table>
<thead>
<tr>
<th></th>
<th>Spark Streaming</th>
<th>Storm</th>
<th>Trident (built on Storm)</th>
<th>Samza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>micro-batch</td>
<td>one-at-a-time</td>
<td>micro-batch</td>
<td>one-at-a-time</td>
</tr>
<tr>
<td>Language Support</td>
<td>Scala, Java, Python</td>
<td>Java, Scala, Python, Ruby, Clojure...</td>
<td>Java, Clojure, Scala</td>
<td>Scala, Java</td>
</tr>
<tr>
<td>Resource Managers</td>
<td>YARN, Mesos, Standalone</td>
<td>YARN, Mesos</td>
<td>YARN, Mesos</td>
<td>YARN</td>
</tr>
<tr>
<td>Latency</td>
<td>~0.5 seconds</td>
<td>~100ms</td>
<td>~0.5 seconds</td>
<td>~100ms</td>
</tr>
<tr>
<td>Throughput</td>
<td>****</td>
<td>**</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Age</td>
<td>2+</td>
<td>3.5+</td>
<td>1.5+</td>
<td>1+</td>
</tr>
<tr>
<td>Known Production Instances</td>
<td>50+ Multi-Vendor Support</td>
<td>50+ Multi-Vendor Support</td>
<td>??? Multi-Vendor Support</td>
<td>Outside LinkedIn only a handful. No vendors.</td>
</tr>
</tbody>
</table>
OSS options for Stream Processing

<table>
<thead>
<tr>
<th></th>
<th>Spark Streaming</th>
<th>Storm</th>
<th>Trident (built on Storm)</th>
<th>Samza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exactly Once Processing</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Functions on Sliding Windows</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Higher Order Functions</td>
<td>Yes. From Spark.</td>
<td>No.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(Aggregations, Joins, etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Spark Streaming Advantage

- Automatically inherit developments in Spark
 - DataFrames
 - Mllib
 - Dynamic Resource Allocation
 - Vast ecosystem of “packages”

- Same framework for batch and streaming
 - Operational ease
 - Lambda Architectures are easy to implement
Exactly Once Processing

Should you care?

- In a cluster, machine failure is frequent
- “Double Counting” leads to False Positives: Alerting, predictive analytics, etc will have too many false positives when you double count data. You will end up “loosening” your thresholds

Thus, not a trivial consideration.
Exactly Once in Spark Streaming

Receiving Data:
- Use Kafka Direct receiver
- If offsets are fixed, can re-Create micro-batch RDD identically
- What if producer put dupes in Kafka? Generate UUID per event and dedupe.

Process Data:
- Deterministic DAG of operations

Output Processed Data:
- Failures can happen when only part of the output data is written
- Each micro-batch has a unique identifier: Batch-Time
- Use batch-time as key to perform “transactional writes”
Thank You!