
Apache Hadoop YARN: The Next-
generation Distributed Operating
System

Zhijie Shen & Jian He @ Hortonworks

About Us

● Software Engineer @ Hortonworks, Inc.
● Hadoop Committer @ The Apache

Foundation

● We’re doing YARN!

Agenda

● What Is YARN
● YARN Framework
● Recent Development
● Writing Your YARN Applications

What Is YARN (1)

What Is YARN (2)

Motivation:
● Flexibility - Enabling data processing model

more than MapReduce
● Efficiency - Improving performance and QoS
● Resource Sharing - Multiple workloads in

cluster

Agenda

● What Is YARN
● YARN Framework
● Recent Development
● Writing Your YARN Applications

YARN Framework (1)

JobTracker-TaskTracker
● MapReduce Only
● Scalability

○ 2009 – 8 cores, 16GB of RAM,

4x1TB disk

○ 2012 – 16+ cores, 48-96GB of

RAM, 12x2TB or 12x3TB of disk

● Poor Cluster Utilization
○ distinct map slots and reduce

slots

YARN Framework (2)
RescourceManager:
Arbitrates resources among all the
applications in the system

NodeManager:
the per-machine slave, which is responsible
for launching the applications’ containers,
monitoring their resource usage

ApplicationMaster:
Negatiate appropriate resource containers
from the Scheduler, tracking their status and
monitoring for progress

Container:
Unit of allocation incorporating resource
elements such as memory, cpu, disk,
network etc, to execute a specific task of the
application (similar to map/reduce slots in
MRv1)

YARN Framework (3)
Execution Sequence:
1. A client program submits the application
2. ResourceManager allocates a specified

container to start the ApplicationMaster
3. ApplicationMaster, on boot-up, registers with

ResourceManager
4. ApplicationMaster negotiates with

ResourceManager for appropriate resource
containers

5. On successful container allocations,
ApplicationMaster contacts NodeManager to
launch the container

6. Application code is executed within the
container, and then ApplicationMaster is
responded with the execution status

7. During execution, the client communicates
directly with ApplicationMaster or
ResourceManager to get status, progress
updates etc.

8. Once the application is complete,
ApplicationMaster unregisters with
ResourceManager and shuts down, allowing its
own container process

YARN Framework (4)
Components interfacing RM to the
clients:
● ClientRMService
● AdminService

Components interacting with the
per-application AMs:
● ApplicationMasterService

Components connecting RM to the
nodes:
● ResourceTrackerService

Core of the ResourceManager
● ApplicationsManager
● Scheduler
● Security

YARN Framework (5)
Component for NM-RM
communication:
● NodeStatusUpdater

Core component managing
containers on the node:
● ContainerManager

Component monitoring node
health:
● NodeHealthCheckService

Component interacting with OS to
start/stop the container process:
● ContainerExecutor

ACL and Token verification:
● Security

YARN Framework (7)

Scheduler
● FIFO
● Fair
● Capcity

Agenda

● What Is YARN
● YARN Framework
● Recent Development
● Writing Your YARN Applications

Recent Development (1)

ResourceManager High Availability
● RM is a single point of failure.

○ Restart for various reasons: Bugs, hardware failures, deliberate down-
time for upgrades

● Goal: transparent to users and no need to explicitly
monitor such events and re-submit jobs.

● Overly complex in MRv1 for the fact that JobTracker
has to save too much information: both cluster state and
per-application running state.
○ limitation: JobTracker dies meaning all the applications’ running-state

are lost

Recent Development (2)

ResourceManager Recovery
● RM Restart Phase 1 (Done): All running Applications are killed after RM

restarts.
● RM Restart Phase 2: Applications are not killed and report running state

back to RM after RM comes up.

● RM only saves application submission metadata and cluster-level status
(eg: Secret keys, tokens)

● Each application is responsible for persisting and recovering its
application-specific running state.
○ MR job implements its own recovery mechanism by writing job-specific

history data into a separate history file on HDFS

Recent Development (3)
● Pluggable state store: ZooKeeper,

HDFS
● NM, AM, Clients retry and redirect

using RM proxy

Recent Development (4)

ResourceManager Failover
● Leader election (ZooKeeper)

● Transfer of resource-management authority to a newly
elected leader.

● Clients (NM, AM, clients) redirect to the new RM
○ abstracted by RMProxy.

Recent Development (5)

Long Running Service
- Work-preserving AM restart.
- Work-preserving RM restart.
- Work-preserving NM restart.

Recent Development (6)

Application Historic Data Service
● ResourceManager records generic application

information
○ Application
○ ApplicationAttempt
○ Container

● ApplicationMaster writes framework specific information
○ Free for users to define

● Multiple interfaces to inquiry the historic information
○ RPC
○ Web UI
○ RESTful Services

Recent Development (7)

Application History Data Service

Agenda

● What Is YARN
● YARN Framework
● Recent Development
● Writing Your YARN Applications

Writing Your YARN Applications (1)

Client API
● ApplicationClientProtocol

○ The protocol for a client that communicates with
ResourceManager

○ submitApplication, getApplicationReport,
killApplication, etc.

○ YarnClient Library
■ Wrapper over ApplicationClientProtocol to

simplify usage

Writing Your YARN Applications (2)

ApplicationMaster API
● ApplicationMasterProtocol

○ The protocol used by ApplicationMaster to talk to
ResourceManager

○ registerApplicationMaster, finisApplicationMaster, allocate
○ AMRMClient, AMRMClientAsync

● ContainerManagementProtocol
○ The protocol used by ApplicationMaster to talk to

NodeManager to
○ startContainers, stopContainers, etc.
○ NMClient, NMClientAsync

Writing Your YARN Applications (3)

Example - Client: submitting an application
...
// Get the RPC stub
ApplicationClientProtocol applicationsManager =
 ((ApplicationClientProtocol) rpc.getProxy(
 ApplicationClientProtocol.class, rmAddress, appsManagerServerConf));
// Assign an application ID
GetNewApplicationRequest request =
 Records.newRecord(GetNewApplicationRequest.class);
GetNewApplicationResponse response =
 applicationsManager.getNewApplication(request);
...
// Create the request to send to the ApplicationsManager
SubmitApplicationRequest appRequest =
 Records.newRecord(SubmitApplicationRequest.class);
appRequest.setApplicationSubmissionContext(appContext);
// Submit the application to ResourceManager
applicationsManager.submitApplication(appRequest);

Writing Your YARN Applications (4)

Example - Client: getting an application report
…
// Get an application report
GetApplicationReportRequest reportRequest =
 Records.newRecord(GetApplicationReportRequest.class);
reportRequest.setApplicationId(appId);
GetApplicationReportResponse reportResponse =
 applicationsManager.getApplicationReport(reportRequest);
ApplicationReport report = reportResponse.getApplicationReport();

Example - Client: killing an application
…
// Kill an application
KillApplicationRequest killRequest =
 Records.newRecord(KillApplicationRequest.class);
killRequest.setApplicationId(appId);
applicationsManager.forceKillApplication(killRequest);

Writing Your YARN Applications (5)

Example - AM: registration
 // Get the RPC stub
 ApplicationMasterProtocol resourceManager =
 (ApplicationMasterProtocol) rpc.getProxy(ApplicationMasterProtocol.class, rmAddress, conf);
 RegisterApplicationMasterRequest appMasterRequest =
 Records.newRecord(RegisterApplicationMasterRequest.class);
 // Set registration details
 ...
 RegisterApplicationMasterResponse response =
 resourceManager.registerApplicationMaster(appMasterRequest);

Writing Your YARN Applications (6)

Example - AM: requesting containers
 List<ResourceRequest> requestedContainers;
 List<ContainerId> releasedContainers
 AllocateRequest req = Records.newRecord(AllocateRequest.class);
 // The response id set in the request will be sent back in
 // the response so that the ApplicationMaster can
 // match it to its original ask and act appropriately.
 req.setResponseId(rmRequestID);
 // Set ApplicationAttemptId
 req.setApplicationAttemptId(appAttemptID);
 // Add the list of containers being asked for
 req.addAllAsks(requestedContainers);
 // Add the list of containers which the application don’t need any more
 req.addAllReleases(releasedContainers);
 // Assuming the ApplicationMaster can track its progress
 req.setProgress(currentProgress);
 AllocateResponse allocateResponse = resourceManager.allocate(req);

Writing Your YARN Applications (7)

Examples - AM: Starting containers
 // Get the RPC stub
 ContainerManagementProtocol cm =
 (ContainerManager)rpc.getProxy(ContainerManagementProtocol.class, cmAddress, conf);
 // Now we setup a ContainerLaunchContext
 ContainerLaunchContext ctx =
 Records.newRecord(ContainerLaunchContext.class);
 …
 // Send the start request to the ContainerManager
 StartContainerRequest startReq = Records.newRecord(StartContainerRequest.class);
 startReq.setContainerLaunchContext(ctx);
 cm.startContainer(startReq);

http://hortonworks.com/labs/yarn/

