
HDFS Smart Storage Management
Towards Higher Storage Efficiency

Wei Zhou

Apache Big Data Europe 2016

Outline

Motivation

Architecture

Design

Rule

Case Study

Summary

Motivation

 Data to be processed and stored boosts
 Internet of Things
 Real time stream processing
 Online Analytical Processing
 Artificial Intelligence / Deep Learning

 Data needs to be processed in time
 From data been generated to been processed
 Stored with complex format

Motivation

 File size
 Temperature: hot and cold
 Workloads: on-line query / off-line analysis

Support for more scenarios

Motivation

Object storage HDFS-7240
 Targets at:

 Billions of objects
 Vary for from KB level to tens of MB
 Reliability, consistency and availability

 Object store. No file metadata, K/V based API
 Supported in Amazon S3, Azure, Aliyun, …

Motivation

Network bandwidth increases
 10Gbps network is the mainstream
 40Gbps or even 100Gbps is on the way

Hardware

Motivation

 More memory

 Storage device
 Cheaper. History data
 Faster. NVMe and 3D XPoint® Technology

 Different types of storage used in HDFS

Hardware

Motivation

But this is not the end of the story!

Facility Target Using

Cache Performance Call API explicitly

Heterogeneous Storage Management
Performance
Cost saving Call API explicitly

Erasure Coding Space saving Call API explicitly

Mover Maintain Call CLI explicitly

Storage Policy Satisfier Maintain Call API explicitly

DiskBalancer Maintain Call API explicitly

Software

Motivation

But it remains a BIG challenge to identify…

which files need to be cached?

when to un-cache?

Which files to un-cache?

And more
like this!!

Motivation

Something that can handle these issues automatically and smartly

by using the right facilities at the right time.

Motivation

Key to these questions
 sense the data temperature timely
 predicate the temperature change
 deal with the change
 evaluate a storage device’s efficiency

Motivation

 Aware of current status

States of resources

States of data

To solve these question, we have to:

 Respect to users

Definition and threshold

Preference

 Learn from history

access pattern

Motivation

User
Config

Current

Status

History
Info

Algorithm Action

Architecture

…

Name Node 1

SSM

Data Node 1

…

Data Node N

Admin

Name Node M
Execute action

Info

Client

Manage
rules

Query info

Info

Principle

 Optional service for HDFS
 Run facilities manually may not be allowed

 Should not:
 Break the function of cluster
 Bring in security issue to the cluster

 Trying to:
 Minimize the overhead to the cluster
 be simple for porting

Before we dive into the detailed design:

Design

Interface with
user/admin

Design

SSM

Data query

Data query

Data
query

Save
data

Checkpoint

Events

Events Events

Actions Actions

ActionExecutor

StatesManager

CacheManager StorageManager

RuleManager H
 D

 F S

Lo
cal Sto

rage

StatesManager

 Historical information. For
example, file access history, cache
hit statistics, disk throughputs of
DataNodes.

 Current status information. E.g. file
storage policy, a file is in cache or
not. This kind of information is not
required to be stored as it can be
queried from NameNodes when
needed.

 Forward and generate events to
RuleManger

Design

SSM

Data query

Data query

Data
query

Save
data

Checkpoint

Events

Events Events

Actions Actions

ActionExecutor

StatesManager

CacheManager StorageManager

RuleManager H
 D

 F S

Lo
cal Sto

rage

RuleManager

 Parse rules and execute rules
 Explore rule for files without

specifying a rule.
 Templates

How to use of SSM?

SSM
Rule

…
Name Node 1

Data Node 1

…

Data Node N

Name Node M

HDFS Cluster

Achieve better performance without modifying upper App logic

Design

Rule

comment starts with a ‘#’
Objects_to_manipulate:
[Trigger |] Conditions | Commands

Syntax

It links history info, current status, user configuration and
action together. It’s a guide line for SSM to function.

Objects:
file
directory
storage
cache
memory
node
cluster

Trigger: when the
‘Conditions’ are evaluated
and checked. It’s optional.

It combines the
history, current
status and user
preference together.
Predefined variables
be used to setup the
expression

What SSM should do when
the ‘Conditions’ fulfilled

Rule

file.path matches “/fooA/abc*”:
accessCount(10min) >= 10 | cache

Examples

datanode:
every 1:00 | datanode.storageUnbalanceRatio(‘SSD’) > 30 | diskbalance

file.path matches “/fooB/*”:
age >= 30d | archive

Rule

StatesManager RuleManager CacheManager StorageManager ActionExecutor

Analysis Rule
Notify the
kind of data
needed

Notify

Trigger?

Wait for event

Yes

Periodical

Check cond.Check cond.

No

Gen. event Gen. event

Yes Yes

NoNo
Actions

Event ?

Execution flow

Case Study

DataNode

HDD

SSD

MEM

B

Read
DataNode

HDD

SSD

MEM
B

Read

B

file.path matchs “/foo/*”:
accessCount(10min) >= 3 | mover ONE_SSD

DataNode

HDD

SSD

MEM
B

Read

B

file.path matchs “/foo/*”:
accessCount(10min) >= 3 | cache

Optimize when getting HOT

Case Study

Without SSM
It’s hard to implement!

Archive COLD data

With SSM

Archive when the cluster is in low load

file.path matchs “/foo/*”:
age > 30d | archive

COLD data: files under directory /foo and age larger than 30 days

Case Study

Without SSM
It’s hard to implement!

Archive COLD data

With SSM

Archive when the cluster is in low load

file.path matchs “/foo/*”:
accessCount(30d) < 3 | archive

COLD data: files under directory /foo and not been read for more than 3
times in last 30 days

Case Study

Client NameNode

SSM

3. create file with storage policy
“ALL_SSD”

Optimization on write with fast storage

Status

 The discussion is continuing on

Prototype undergoing
Implementation for the 3 use cases
Archive cold data
Move hot data to fast storage
Cache hot data

Status

 Enhance HDFS cache for partial caching

Block-level statistics and optimization

 Extend EC for data archive usage

Summary

Rule-based engine
 State-aware management
Automation
Provide an unified interface to user
 Flexible
 Tune HDFS to fit application behaviors

We introduce in an mechanism to optimize the efficiency
of HDFS cluster:

JIRA: HDFS-7343
Any suggestions or participations will be appreciated!

https://issues.apache.org/jira/browse/HDFS-7343

Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should
visit the referenced web site and confirm whether referenced data are accurate.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.

*Other names and brands may be claimed as the property of others.

Copyright © 2016 Intel Corporation.

31

