
Nov / 14 / 16

Building a Scalable
Recommender System
with Apache Spark,
Apache Kafka
and Elasticsearch

Nick Pentreath

§ @MLnick
§ Principal Engineer, IBM
§ Apache Spark PMC
§ Focused on machine learning
§ Author of Machine Learning with Spark

About

§ Recommender systems & the machine
learning workflow

§ Data modelling for recommender
systems

§ Why Spark, Kafka & Elasticsearch?
§ Kafka & Spark Streaming
§ Spark ML for collaborative filtering
§ Deploying & scoring recommender

models with Elasticsearch
§ Monitoring, feedback & re-training
§ Scaling model serving
§ Demo

Agenda

Recommender
Systems & the ML
Workflow

Recommender
Systems

Overview

The Machine
Learning
Workflow

Perception

Data ??? Machine
Learning ??? $$$

The Machine
Learning
Workflow

Reality

Data

• Historical
• Streaming

Ingest Data
Processing

• Feature
transformation &
engineering

Model
Training

• Model selection &
evaluation

Deploy

• Pipelines, not just
models

• Versioning

Live System

• Predict given new
data

• Monitoring & live
evaluation

Feedback Loop

Spark DataFrames

Spark ML

Various ???

Stream (Kafka)

Missing
piece!

The Machine
Learning
Workflow

Recommender Version

Data Ingest Data
Processing

• Aggregation
• Handle implicit

data

Model
Training

• ALS
• Ranking-style

evaluation

Deploy

• Model size &
complexity

Live System

•User & item
recommendations
•Monitoring, filters

Feedback => another Event Type

Spark DataFrames

Spark ML

Elasticsearch

• User & Item
Metadata

• Events

Elasticsearch

Stream (Kafka)

Data Modeling for
Recommender
Systems

Data modelUser and Item
Metadata

! !

System RequirementsUser and Item
Metadata

! !

Filtering &
Grouping

Business
Rules

User interactions

Implicit preference data

• Page view
• eCommerce - cart, purchase
• Media – preview, watch, listen

Intent data

• Search query

Anatomy of a
User Event

Explicit preference data

• Rating
• Review

Social network interactions

• Like
• Share
• Follow

User Interactions

!

!

!

!

!

!

!

!

Data modelAnatomy of a
User Event

!
!

! !! !

!

How to handle implicit feedback?Anatomy of a
User Event

!
!

! !! !

!
!

Why Kafka, Spark
& Elasticsearch?

Scalability
§ De facto standard for a centralized

enterprise message / event queue

Integration
§ Integrates with just about every storage

& processing system
§ Good Spark Streaming integration – 1st

class citizen
§ Including for Structured Streaming (but

still very new & rough!)

Why Kafka?

DataFrames
§ Events & metadata are “lightly

structured” data
§ Suited to DataFrames
§ Pluggable external data source support

Spark ML
§ Spark ML pipelines – including scalable

ALS model for collaborative filtering
§ Implicit feedback & NMF in ALS
§ Cross-validation
§ Custom transformers & algorithms

Why Spark?

Storage
§ Native JSON
§ Scalable
§ Good support for time-series / event data
§ Kibana for data visualisation
§ Integration with Spark DataFrames

Scoring
§ Full-text search
§ Filtering
§ Aggregations (grouping)
§ Search ~== recommendation (more

later)

Why
Elasticsearch?

Kafka for
Recommender
Systems

Event Data
Pipeline

Kafka Spark
Streaming

!

!Item analytics
& aggregation

User analytics
& aggregation

!

Event store

!

Dashboards

Write to Event
Store

Spark
Streaming

Event store

!

Kibana
Dashboards

Spark
Streaming

!
Dashboards

Item Metadata
Analytics

Spark
Streaming

!Item analytics
& aggregation

Aggregated activity
metrics

User Metadata
Analytics

Spark
Streaming

!User analytics
& aggregation

Aggregated activity
metrics &

item exclusions

Structured
Streaming

Status

§ Still early days
§ Initial Kafka support in Spark 2.0.2
§ No ES support yet – not clear if it will be

a full-blown datasource or
ForeachWriter

§ For now, you can create a custom
ForeachWriter for your needs

Spark ML for
Collaborative
Filtering

Matrix FactorizationCollaborative
Filtering

3
1
5 2

1
2 1

!

!

−1.1 3.2 4.3
0.2 1.4 3.1
2.5 0.3 2.3
4.3 −2.4 0.5
3.6 0.3 1.2

0.2 1.7 2.3 0.1
1.9 0.4 0.8 −0.3
1.5 −1.2 0.3 1.2

! !

PredictionCollaborative
Filtering

3
1
5 2

1
2 1

!

!

−1.1 3.2 4.3
0.2 1.4 3.1
2.5 0.3 2.3
4.3 −2.4 0.5
3.6 0.3 1.2

0.2 1.7 2.3 0.1
1.9 0.4 0.8 −0.3
1.5 −1.2 0.3 1.2

! !

Loading Data in Spark MLCollaborative
Filtering

Implicit Preference DataAlternating Least
Squares

Deploying &
Scoring
Recommendation
Models

Full-text Search & SimilarityPrelude: Search

“cat videos”

!
!

cat videos
0 0 ⋯ 0 1 ⋯
0 1 ⋯ 1 1 ⋯
1 1 ⋯ 0 0 ⋯
1 0 ⋯ 0 1 ⋯

Similarity

Sort
results

0 1 ⋯ 1 0 ⋯

Scoring RankingAnalysis Term vectors

Can we use the same machinery?Recommendation

!
0 0 ⋯ 0 1 ⋯
0 1 ⋯ 1 1 ⋯
1 1 ⋯ 0 0 ⋯
1 0 ⋯ 0 1 ⋯

Sort
results

1.2 ⋯ −0.2 0.3

Dot product & cosine similarity
… the same as we need for recommendations!

Scoring RankingAnalysis Term vectors
!!!

SimilarityUser
(or item)
vector

?

!

Delimited Payload FilterElasticsearch
Term Vectors

Raw vector

1.2 ⋯ −0.2 0.3

Term vector with payloads

0|1.2 ⋯ 3|-0.2 4|0.3

Custom analyzer

Custom scoring function

• Native script (Java), compiled for speed
• Scoring function computes dot product by:

§ For each document vector index (“term”), retrieve
payload

§ score += payload * query(i)

• Normalizes with query vector norm and
document vector norm for cosine similarity

Elasticsearch
Scoring

Can we use the same machinery?Recommendation

User
(or item)
vector

! Sort
results

1.2 ⋯ −0.2 0.3

Scoring RankingAnalysis Term vectors

!

!!

Custom
scoring
function

!!

Delimited
payload filter

−1.1 1.3 ⋯ 0.4
1.2 −0.2 ⋯ 0.3
0.5 0.7 ⋯ −1.3
0.9 1.4 ⋯ −0.8

We get search engine functionality for free!Elasticsearch
Scoring

Deploying to ElasticsearchAlternating Least
Squares

Monitoring &
Feedback

Logging Recommendations ServedSystem Events

! !
!
!

!
!

!

Logging Recommendation ActionsSystem Events

!
! !

!

Tracking
Performance

Kafka Spark
Streaming

!Impression capping /
fatigue

Performance
monitoring & alerts

!

Event store

!

Dashboards

!
! !

!

!! !!

!

Scaling Model
Scoring

Scoring
Performance

0

100

200

300

400

500

600

100,000 1,000,000

Ti
m

e
(m

s)

Size of item set

Scoring time per query,
by factor dimension & number of items

k=20 k=50 k=100

*3x nodes, 30x shards

Scoring
Performance

0
50

100
150
200
250
300
350
400
450
500

100,000 1,000,000

Ti
m

e
(m

s)

Size of item set

Scoring time per query,
by number of shards & number of items

10 shards 30 shards

60 shards 90 shards

*3x nodes, k=50

Increasing number of shards

Scoring
Performance

Locality Sensitive Hashing

• LSH hashes each input vector into L “hash
tables”. Each table contains a “hash signature”
created by applying k hash functions.

• Standard for cosine similarity is Sign Random
Projections

• At indexing time, create a “bucket” by combining
hash table id and hash signature

• Store buckets as part of item model metadata
• At scoring time, filter candidate set using term

filter on buckets of query item
• Tune LSH parameters to trade off speed /

accuracy
• LSH coming soon to Spark ML – SPARK-5992

Scoring
Performance

0

50

100

150

200

250

Brute force LSH

Ti
m

e
(m

s)

Scoring time per query - brute force vs LSH

*3x nodes, 30x shards, k=50, 1,000,000 items

Locality Sensitive Hashing

Scoring
Performance

0

50

100

150

200

250

Brute force LSH Score-then-search

Ti
m

e
(m

s)

Scoring time per query – LSH vs score-then-search

Score Sort Search

*3x nodes, 30x shards, k=50, 1,000,000 items

Comparison to “score then search”

Demo

Future Work

Future Work • Apache Solr version of scoring plugin (any
takers?)

• Investigate ways to improve Elasticsearch
scoring performance
§ Performance for LSH-filtered scoring should be better!
§ Can we dig deep into ES scoring internals to combine

efficiency of matrix-vector math with ES search & filter
capabilities?

• Investigate more complex models
§ Factorization machines & other contextual recommender

models
§ Scoring performance

• Spark Structured Streaming with Kafka,
Elasticsearch & Kibana
§ Continuous recommender application including data,

model training, analytics & monitoring

References • Elasticsearch

• Elasticsearch Spark Integration

• Spark ML ALS for Collaborative Filtering

• Collaborative Filtering for Implicit Feedback Datasets

• Factorization Machines

• Elasticsearch Term Vectors & Payloads

• Delimited Payload Filter

• Vector Scoring Plugin

• Kafka & Spark Streaming

• Kibana

Thanks!
https://github.com/MLnick/elasticsearch-vector-scoring

