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What is Gearpump ?

● A super simple pump that consists of only two gears 
but very powerful at streaming water

● An Akka[2] based real-time streaming engine 
● An Apache Incubator[1] project since Mar.8th, 2016
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Why Gearpump ?

4



Stream processing is hard

● Fault tolerance 
● Infinite Out-of-order data
● Low latency assurance (e.g real-time recommendation)
● Correctness requirement (e.g. charge advertisers for ads) 
● Cheap to update applications  (e.g. tune machine learning 

parameters)



Gearpump makes stream processing easier

● fault tolerant stream processing at latency of milliseconds
● handling out-of-order data
● event-time based window aggregation
● Akka-stream DSL and Apache Beam API support
● runtime DAG modification
● responsive UI with abundant metrics information



Gearpump on TAP

● Gearpump on Trusted Analytics Platform (TAP) 
● Stream processing - performance experiments and results
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Gearpump on TAP

● Gearpump on Trusted Analytics Platform (TAP) 
● Stream processing - performance experiments and results
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▪ Open Source project

▪ Collaborative, cloud-ready platform to 
build applications powered by Big 
Data Analytics 

▪ Includes everything needed by data 
scientists, application developers and 
system operators

▪ Optimized for performance and 
security

Trusted Analytics Platform (TAP) 



Analytics Solutions – Big Data Scale Out

10

Applications
Analytics-powered vertical and horizontal 
solutions

Analytics
Open source platform for collaborative data 
science and analytics application development

Data
Open source, Hadoop-centric platform for 
distributed and scalable storage and processing

Infrastructure
Software-defined storage, network and cloud 
infrastructure optimized for Intel Architecture
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The Anatomy of Trusted Analytics Platform (TAP)

Infrastructure

TA
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TAP-powered Big Data Analytics 
applications and solutions

Polyglot services and APIs for 
application developers

Data Scientists workbench 
including models, algorithms, 
pipelines, engines and frameworks

Extensible Marketplace of built-in 
tools, packages and recipes 

Message brokers and queues for 
batch and stream data ingestion

Distributed processing and 
scalable data storage

Public or private clouds

User, tenant, security, provisioning 
and monitoring for system operators

REST

ATK, Spark*, Impala, H2O, 
Hue,* iPython

Kafka*, GearPump, 
RabbitMQ, MQTT, 
WS, REST

Cloudera CDH (Hadoop/HDFS, 
Hbase)*, PostgreSQL, MySQL, 
Redis, MongoDB, InfluxDB, 
Cassandra
AWS, Rackspace, OVH, 
OpenStack, On/Off-prem

Java, Go

* Leverages Cloudera 
Distribution of Apache Hadoop
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Gearpump on TAP

● Gearpump on Trusted Analytics Platform (TAP) 
● Stream processing - performance experiments and results

14



The problem
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● correlate messages using a key in one second sliding 
window and produce latency stream messages

● consume latency messages and compute average latency 
per firm in one minute buckets 

● send the aggregate message to HBase



The expectations
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● Handle load of 0.5M msg per second all the time
● Handle load of 7M msg per second for peaks of 1 hour
● Message size 250-500 bytes
● Be able to scale for even more



The hardware
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● CPU: Intel(R) Xeon(R) 
CPU E5-2695 v3 @ 
2.30GHz

● Memory: 256 Gbytes 
DDR4

● Storage: 8 SATA SSDs 



The results (1)  - let’s start small: ~700k msg/sec
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Initial attempt



The results (2)  - 8 executors: ~1.6M msg/sec
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Initial attempt
Findings:

● We need to improve Kafka Source - 
queue size, fetch frequency

● Improve Kafka partitions design for 
concurrency

● Network throughput may be a 
bottleneck (1.6M msg/sec * 0.5 k * 
8 bit) - compression



The results (3)  - 16 executors: ~2.7M msg/sec 
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Initial attempt
Findings:

● JVM defaults designed for 
moderate workloads - we need to 
pump them up

● Message marshalling starts to play 
significant role in performance - 
look for better alternatives



The results (4)  - 32 executors: ~5M msg/sec
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Findings:
● Backpressure introduced by JVM 

⇔ JVM communication - use task 
fusing



The results (5)  - 48 executors: 7.4M msg/sec
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Mission accomplished!!!



The results (6)  - 64 executors
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We can go even further..



The results  - summary
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● Great performance numbers on decent hardware
● Predictable scalability

Executors number Req/sec

8 1.6 M

16 2.7 M

32 5 M

48 7,4 M

64 10 M



Gearpump features
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Gearpump 
Architecture

● Actor concurrency
● Message passing 

communication
● error handling and 

isolation with 
supervision hierarchy

● Master HA with Akka 
Cluster
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Use case - Windowed word count

1. Words
KafkaSource WindowCounter KafkaSink
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2. Window Counts



How Gearpump solves the hard parts 

● User interface
● Flow control
● Out-of-order processing
● Exactly once 
● Dynamic DAG 
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User interface - DSL

    val app = StreamApp("dsl", context)
    app.source[String](kafkaSource).
      flatMap(line => line.split("[\\s]+")).map((_, 1)).
      window(FixedWindow.apply(Duration.ofMillis(5L))
        .triggering(EventTimeTrigger)).
      // (word, count1), (word, count2) => (word, count1 + count2)
      groupBy(_._1).sum.sink(kafkaSink)

sinkWindow.groupByKey
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How Gearpump solves the hard parts 

● User interface
● Flow control
● Out-of-order processing
● Exactly once 
● Dynamic DAG 
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Without Flow Control - OOM

KafkaSource WindowCounter KafkaSink

fast fast very slow

31



With Flow Control - Backpressure

KafkaSource WindowCounter KafkaSink

Slow down Slow down Very Slow
backpressurebackpressure

pull slower
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How Gearpump solves the hard parts 

● User Interface
● Flow control
● Out-of-order processing
● Exactly Once 
● Dynamic DAG 
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Out-of-order data

Event time
321
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● Event time - when data generated
● Processing time - when data processed

1

2

3

4

5
6
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On Watermark[4]

Event time
321
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6 watermark

● No timestamp earlier than 
watermark will be seen
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When can window counts be emitted ?

window messages

[0, 2)

[2, 4)

[4, 6)

(“gearpump”, 1)

WindowCounter In-memory Table

● No window can be emitted since 
message as early as time 1 has 
not arrived

(“gearpump”, 1)

(“gearpump”, 3)

(“gearpump”, 5)

(“gearpump”, 4)

(“gearpump”, 2)

WindowCounter
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Out-of-order processing with watermark

(“gearpump”, 1)

WindowCounter

watermark = 0，
No window can be emitted
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window messages

[0, 2)

[2, 4)

[4, 6)

WindowCounter In-memory Table

(“gearpump”, 1)

(“gearpump”, 3)

(“gearpump”, 5)

(“gearpump”, 4)

(“gearpump”, 2)



Out-of-order processing with watermark

window messages

[2, 4)

[4, 6)

WindowCounter In-memory Table

(“gearpump”, 3)

(“gearpump”, 5)

(“gearpump”, 4)

(“gearpump”, 2)
WindowCounter

watermark = 2，
Window [0, 2) can be emitted
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(“gearpump”,  [0, 2) 1)



How to get watermark ?

1. Words
KafkaSource WindowCounter Sink
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2. Window Counts



From upstream 

KafkaSource WindowCounter Sink

50

W(50)

40 30

Watermark

Watermark of 
the operator
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From upstream 
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KafkaSource WindowCounter Sink

60

W(50)

50 40

Watermark

Watermark of 
the operator



More on Watermark

● Source watermark defined by user
● Usually heuristic based 
● Users decide whether to drop data arriving after 

watermark
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How Gearpump solves the hard parts 

● User Interface
● Flow control
● Out-of-order processing
● Exactly once 
● Dynamic DAG 
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Exactly Once with asynchronous checkpointing

(2, kafka_offset)

KafkaSource WindowCounter KafkaSink

Watermark = 2 Watermark = 0 Watermark = 0

(2, kafka_offset)
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(2, kafka_offset)
(2, window_counts)

Exactly Once with asynchronous checkpointing

KafkaSource WindowCounter KafkaSink

Watermark = 2 Watermark = 2 Watermark = 0

(2, window_counts)

45



Exactly Once with asynchronous checkpointing

KafkaSource WindowCounter KafkaSink

Watermark = 2 Watermark = 2 Watermark = 2
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Checkpoint succeed

(2, kafka_offset)
(2, window_counts)



Crash

KafkaSource WindowCounter Sink

Watermark = 3 Watermark = 2 Watermark = 2
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(2, kafka_offset)
(2, window_counts)



Recover to latest checkpoint at 2 

KafkaSource WindowCounter KafkaSink

window_countskafka_offset

Replay from kafka
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(2, kafka_offset)
(2, window_counts)

Get state at 2



How Gearpump solves the hard parts 

● User Interface
● Flow control
● Out-of-order processing
● Exactly Once 
● Dynamic DAG 
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Update the DAG on-the-fly
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1. Words
KafkaSource WindowCounter KafkaSink

2. Window Counts

1. Words
KafkaSource WindowCounter HDFSSink

2. Window Counts

With
out 

Rest
art



Advanced features
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DAG Visualization

● Watermark
● Node size reflects throughput
● Edge width represents flow rate
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DAG Visualization

● Data skew analysis
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Apache Beam[6] Gearpump Runner 

Beam Model: Fn Runners

Apache 
Flink

Apache 
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam 
Python

Execution Execution

Cloud 
Dataflow

Execution

Apache 
Gearpump
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What’s next for 
Gearpump
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Experimental features

● Web UI Authorization / OAuth2 Authentication
● CGroup Resource Isolation
● Binary Storm compatibility
● Akka Streams integration (Gearpump Materializer)
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Summary

● Gearpump is good at streaming infinite out-of-order 
data and guarantees correctness

● Gearpump helps users to easily program streaming 
applications, get runtime information and update 
dynamically
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Get involved

Our home: http://gearpump.apache.org

Contribute code: https://github.com/apache/incubator-gearpump

Report issues:  https://issues.apache.org/jira/browse/GEARPUMP

The team: Kam Kasravi, Manu Zhang, Huafeng Wang, Weihua Jiang, Sean 
Zhong, Karol Brejna, Stanley Xu, …, YOU?
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Learn More       
About TAP  

www.trustedanalytics.org

Engage in 
Community events 

    Meetups, workshops, & webinars
http://trustedanalytics.org/#resources
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