
Apache Gearpump
next-gen streaming engine

Karol Brejna, Intel (karolbrejna@apache.org)

Huafeng Wang, Intel (huafengw@apache.org)

Apache: Big Data Europe 2016 Sevilla, Spain 14 November 2016

Agenda

● What is Gearpump?
● Why Apache Gearpump?
● Apache Gearpump features/internals
● What’s next for Apache Gearpump

2

What is Gearpump ?

● A super simple pump that consists of only two gears
but very powerful at streaming water

● An Akka[2] based real-time streaming engine
● An Apache Incubator[1] project since Mar.8th, 2016

3

Why Gearpump ?

4

Stream processing is hard

● Fault tolerance
● Infinite Out-of-order data
● Low latency assurance (e.g real-time recommendation)
● Correctness requirement (e.g. charge advertisers for ads)
● Cheap to update applications (e.g. tune machine learning

parameters)

Gearpump makes stream processing easier

● fault tolerant stream processing at latency of milliseconds
● handling out-of-order data
● event-time based window aggregation
● Akka-stream DSL and Apache Beam API support
● runtime DAG modification
● responsive UI with abundant metrics information

Gearpump on TAP

● Gearpump on Trusted Analytics Platform (TAP)
● Stream processing - performance experiments and results

7

Gearpump on TAP

● Gearpump on Trusted Analytics Platform (TAP)
● Stream processing - performance experiments and results

8

9

▪ Open Source project

▪ Collaborative, cloud-ready platform to
build applications powered by Big
Data Analytics

▪ Includes everything needed by data
scientists, application developers and
system operators

▪ Optimized for performance and
security

Trusted Analytics Platform (TAP)

Analytics Solutions – Big Data Scale Out

10

Applications
Analytics-powered vertical and horizontal
solutions

Analytics
Open source platform for collaborative data
science and analytics application development

Data
Open source, Hadoop-centric platform for
distributed and scalable storage and processing

Infrastructure
Software-defined storage, network and cloud
infrastructure optimized for Intel Architecture

M
ac

hi
ne

 L
ea

rn
in

g
M

ul
ti-

la
ye

re
d,

 fu
lly

-o
pt

im
iz

ed
 a

lg
or

ith
m

s

Pe
rf

or
m

an
ce

 a
nd

 S
ec

ur
ity

S
ili

co
n

an
d

so
ftw

ar
e

en
ha

nc
em

en
ts

 to
 p

ro
te

ct

an
d

ac
ce

le
ra

te
 d

at
a

an
d

an
al

yt
ic

s

11

The Anatomy of Trusted Analytics Platform (TAP)

Infrastructure

TA
P

C

or
e

Applications

M
ar

ke
tp

la
ce

Services

Ingestion

Analytics

Data Platform

M
an

ag
em

en
t

TAP-powered Big Data Analytics
applications and solutions

Polyglot services and APIs for
application developers

Data Scientists workbench
including models, algorithms,
pipelines, engines and frameworks

Extensible Marketplace of built-in
tools, packages and recipes

Message brokers and queues for
batch and stream data ingestion

Distributed processing and
scalable data storage

Public or private clouds

User, tenant, security, provisioning
and monitoring for system operators

REST

ATK, Spark*, Impala, H2O,
Hue,* iPython

Kafka*, GearPump,
RabbitMQ, MQTT,
WS, REST

Cloudera CDH (Hadoop/HDFS,
Hbase)*, PostgreSQL, MySQL,
Redis, MongoDB, InfluxDB,
Cassandra
AWS, Rackspace, OVH,
OpenStack, On/Off-prem

Java, Go

* Leverages Cloudera
Distribution of Apache Hadoop

12

13

Gearpump on TAP

● Gearpump on Trusted Analytics Platform (TAP)
● Stream processing - performance experiments and results

14

The problem

15

● correlate messages using a key in one second sliding
window and produce latency stream messages

● consume latency messages and compute average latency
per firm in one minute buckets

● send the aggregate message to HBase

The expectations

16

● Handle load of 0.5M msg per second all the time
● Handle load of 7M msg per second for peaks of 1 hour
● Message size 250-500 bytes
● Be able to scale for even more

The hardware

17

● CPU: Intel(R) Xeon(R)
CPU E5-2695 v3 @
2.30GHz

● Memory: 256 Gbytes
DDR4

● Storage: 8 SATA SSDs

The results (1) - let’s start small: ~700k msg/sec

18

Initial attempt

The results (2) - 8 executors: ~1.6M msg/sec

19

Initial attempt
Findings:

● We need to improve Kafka Source -
queue size, fetch frequency

● Improve Kafka partitions design for
concurrency

● Network throughput may be a
bottleneck (1.6M msg/sec * 0.5 k *
8 bit) - compression

The results (3) - 16 executors: ~2.7M msg/sec

20

Initial attempt
Findings:

● JVM defaults designed for
moderate workloads - we need to
pump them up

● Message marshalling starts to play
significant role in performance -
look for better alternatives

The results (4) - 32 executors: ~5M msg/sec

21

Findings:
● Backpressure introduced by JVM

⇔ JVM communication - use task
fusing

The results (5) - 48 executors: 7.4M msg/sec

22

Mission accomplished!!!

The results (6) - 64 executors

23

We can go even further..

The results - summary

24

● Great performance numbers on decent hardware
● Predictable scalability

Executors number Req/sec

8 1.6 M

16 2.7 M

32 5 M

48 7,4 M

64 10 M

Gearpump features

25

Gearpump
Architecture

● Actor concurrency
● Message passing

communication
● error handling and

isolation with
supervision hierarchy

● Master HA with Akka
Cluster

26

Use case - Windowed word count

1. Words
KafkaSource WindowCounter KafkaSink

27

2. Window Counts

How Gearpump solves the hard parts

● User interface
● Flow control
● Out-of-order processing
● Exactly once
● Dynamic DAG

28

User interface - DSL

 val app = StreamApp("dsl", context)
 app.source[String](kafkaSource).
 flatMap(line => line.split("[\\s]+")).map((_, 1)).
 window(FixedWindow.apply(Duration.ofMillis(5L))
 .triggering(EventTimeTrigger)).
 // (word, count1), (word, count2) => (word, count1 + count2)
 groupBy(_._1).sum.sink(kafkaSink)

sinkWindow.groupByKey

29

How Gearpump solves the hard parts

● User interface
● Flow control
● Out-of-order processing
● Exactly once
● Dynamic DAG

30

Without Flow Control - OOM

KafkaSource WindowCounter KafkaSink

fast fast very slow

31

With Flow Control - Backpressure

KafkaSource WindowCounter KafkaSink

Slow down Slow down Very Slow
backpressurebackpressure

pull slower

32

How Gearpump solves the hard parts

● User Interface
● Flow control
● Out-of-order processing
● Exactly Once
● Dynamic DAG

33

Out-of-order data

Event time
321

Pr
oc

es
si

ng
 t

im
e

● Event time - when data generated
● Processing time - when data processed

1

2

3

4

5
6

34

On Watermark[4]

Event time
321

Pr
oc

es
si

ng
 t

im
e

1

2

3

4

5
6 watermark

● No timestamp earlier than
watermark will be seen

35

When can window counts be emitted ?

window messages

[0, 2)

[2, 4)

[4, 6)

(“gearpump”, 1)

WindowCounter In-memory Table

● No window can be emitted since
message as early as time 1 has
not arrived

(“gearpump”, 1)

(“gearpump”, 3)

(“gearpump”, 5)

(“gearpump”, 4)

(“gearpump”, 2)

WindowCounter

36

Out-of-order processing with watermark

(“gearpump”, 1)

WindowCounter

watermark = 0，
No window can be emitted

37

window messages

[0, 2)

[2, 4)

[4, 6)

WindowCounter In-memory Table

(“gearpump”, 1)

(“gearpump”, 3)

(“gearpump”, 5)

(“gearpump”, 4)

(“gearpump”, 2)

Out-of-order processing with watermark

window messages

[2, 4)

[4, 6)

WindowCounter In-memory Table

(“gearpump”, 3)

(“gearpump”, 5)

(“gearpump”, 4)

(“gearpump”, 2)
WindowCounter

watermark = 2，
Window [0, 2) can be emitted

38

(“gearpump”, [0, 2) 1)

How to get watermark ?

1. Words
KafkaSource WindowCounter Sink

39

2. Window Counts

From upstream

KafkaSource WindowCounter Sink

50

W(50)

40 30

Watermark

Watermark of
the operator

40

From upstream

41

KafkaSource WindowCounter Sink

60

W(50)

50 40

Watermark

Watermark of
the operator

More on Watermark

● Source watermark defined by user
● Usually heuristic based
● Users decide whether to drop data arriving after

watermark

42

How Gearpump solves the hard parts

● User Interface
● Flow control
● Out-of-order processing
● Exactly once
● Dynamic DAG

43

Exactly Once with asynchronous checkpointing

(2, kafka_offset)

KafkaSource WindowCounter KafkaSink

Watermark = 2 Watermark = 0 Watermark = 0

(2, kafka_offset)

44

(2, kafka_offset)
(2, window_counts)

Exactly Once with asynchronous checkpointing

KafkaSource WindowCounter KafkaSink

Watermark = 2 Watermark = 2 Watermark = 0

(2, window_counts)

45

Exactly Once with asynchronous checkpointing

KafkaSource WindowCounter KafkaSink

Watermark = 2 Watermark = 2 Watermark = 2

46

Checkpoint succeed

(2, kafka_offset)
(2, window_counts)

Crash

KafkaSource WindowCounter Sink

Watermark = 3 Watermark = 2 Watermark = 2

47

(2, kafka_offset)
(2, window_counts)

Recover to latest checkpoint at 2

KafkaSource WindowCounter KafkaSink

window_countskafka_offset

Replay from kafka

48

(2, kafka_offset)
(2, window_counts)

Get state at 2

How Gearpump solves the hard parts

● User Interface
● Flow control
● Out-of-order processing
● Exactly Once
● Dynamic DAG

49

Update the DAG on-the-fly

50

1. Words
KafkaSource WindowCounter KafkaSink

2. Window Counts

1. Words
KafkaSource WindowCounter HDFSSink

2. Window Counts

With
out

Rest
art

Advanced features

51

DAG Visualization

● Watermark
● Node size reflects throughput
● Edge width represents flow rate

52

DAG Visualization

● Data skew analysis

53

Apache Beam[6] Gearpump Runner

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

Apache
Gearpump

54

What’s next for
Gearpump

55

Experimental features

● Web UI Authorization / OAuth2 Authentication
● CGroup Resource Isolation
● Binary Storm compatibility
● Akka Streams integration (Gearpump Materializer)

56

Summary

● Gearpump is good at streaming infinite out-of-order
data and guarantees correctness

● Gearpump helps users to easily program streaming
applications, get runtime information and update
dynamically

57

References

1. gearpump.apache.org
2. akka.io
3. http://www.slideshare.net/SeanZhong/strata-singapore-gearpumpreal-ti

me-dagprocessing-with-akka-at-scale
4. https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/p734-akid

au.pdf
5. https://yahooeng.tumblr.com/post/135321837876/benchmarking-streami

ng-computation-engines-at
6. Apache Beam [project overview]
7. www.trustedanalytics.org - learn more about TAP 58

http://gearpump.apache.org
http://gearpump.apache.org
http://akka.io/
http://akka.io/
http://www.slideshare.net/SeanZhong/strata-singapore-gearpumpreal-time-dagprocessing-with-akka-at-scale
http://www.slideshare.net/SeanZhong/strata-singapore-gearpumpreal-time-dagprocessing-with-akka-at-scale
http://www.slideshare.net/SeanZhong/strata-singapore-gearpumpreal-time-dagprocessing-with-akka-at-scale
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/p734-akidau.pdf
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/p734-akidau.pdf
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/p734-akidau.pdf
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://docs.google.com/presentation/d/1Tc9MdXTDicb6jVCrXjsCbbnLYQCxYiKlTYdVpRkYdBQ/edit#slide=id.g11bcfc06a9_1_1098
https://docs.google.com/presentation/d/1Tc9MdXTDicb6jVCrXjsCbbnLYQCxYiKlTYdVpRkYdBQ/edit#slide=id.g11bcfc06a9_1_1098
http://www.trustedanalytics.org
http://www.trustedanalytics.org

Get involved

Our home: http://gearpump.apache.org

Contribute code: https://github.com/apache/incubator-gearpump

Report issues: https://issues.apache.org/jira/browse/GEARPUMP

The team: Kam Kasravi, Manu Zhang, Huafeng Wang, Weihua Jiang, Sean
Zhong, Karol Brejna, Stanley Xu, …, YOU?

59

http://gearpump.apache.org
https://github.com/apache/incubator-gearpump
https://issues.apache.org/jira/browse/GEARPUMP

Learn More
About TAP

www.trustedanalytics.org

Engage in
Community events

 Meetups, workshops, & webinars
http://trustedanalytics.org/#resources

60

http://www.trustedanalytics.org/
http://www.trustedanalytics.org/
http://trustedanalytics.org/#resources
http://trustedanalytics.org/#resources

