
mailto:bhupesh@apache.org
mailto:bhupesh@apache.org
mailto:nkourtellis@apache.org
mailto:nkourtellis@apache.org


Agenda

● Introduction to Big Data, Stream Processing and Machine Learning
● Apache SAMOA and the Apex Runner
● Apache Apex and relevant concepts
● Challenges and Case Study
● Conclusion with Key Takeaways



Big Data

Introduction

● What is Big Data?
○ Search engine queries
○ Facebook posts
○ Emails
○ Tweets
○ etc.

● Volume, Variety, Velocity, Veracity
● Subjective?
● Beyond capability of typical commodity 

machines



Stream 
Processing

Distributed

● Why?
○ Real time, Low latency processing
○ Big Data, High speed of arrival
○ Potentially infinite sequence of data

● Each data item in the stream passes 
through a series of computation stages

● Helps in distributing the computation over 
multiple machines

● Typically, data goes to computation
● Batch - Special case of Streaming, 

snapshot over an interval of time



Traditional 
Machine 
Learning

Batch Oriented

● Supervised - most common
○ Training and Scoring

● One time model building
● Data sets

○ Training - Model Building
○ Holdout - Parameter tuning
○ Test - Accuracy of the model

● Training data has to be a representative 
data set

● Complex algorithms



Online Machine 
Learning?

Streaming!

● Change!
○ Dynamically adapt to new patterns in data
○ Change over time (concept drift)

● Model updates
● Approximation algorithms

○ Single pass - one data item at a time

○ Sub-linear space and time per data item
○ Small error with high probability



Online Machine Learning

Updatable 
Model

Training Data 
Stream

New 
Instances

Evaluation

Training 
Stream

Scoring 
Stream



Apache SAMOA

Scalable Advanced
Massive Online Analysis

● What we need
○ Platform for streaming learning algorithms
○ Distributed, Scalable

● A platform for mining big data streams
● Framework for developing new 

distributed stream mining algorithms
● Framework for deploying algorithms on 

new distributed stream processing 
engines

● A library of Streaming Machine Learning 
Algorithms



Apache SAMOA - Taxonomy



Apache SAMOA 
Architecture



Adapter Layers

ML Algorithms

Distributed Stream
Processing Engines

Minimal API to cover all modern DSPEs

State-of-the-art implementations for 
distributed machine learning on streams



Why is SAMOA 
important?

● Program once, run everywhere
● Avoid deploy cycles

○ No system downtime
○ No complex backup/update process
○ No need to select update frequency



Logical Building Blocks



Apache SAMOA 
Developer API

TopologyBuilder builder;
Processor sourceOne = new 
SourceProcessor();
builder.addProcessor(sourceOne);
Stream streamOne = 
builder.createStream(sourceOne);
Processor sourceTwo = new 
SourceProcessor();
builder.addProcessor(sourceTwo);
Stream streamTwo = 
builder.createStream(sourceTwo);
Processor join = new JoinProcessor();
builder.addProcessor(join)

.connectInputShuffle(streamOne)

.connectInputKey(streamTwo);



● Component Factory
○ ApexComponentFactory

■ createTopology

■ createEntrancePi

■ createPi

■ createStream

● Topology - 
○ Apex Topology - DAG

■ addEntranceProcessingItem

■ addProcessingItem

■ addStream

● Other interfaces for functionality
○ EntranceProcessingItem

○ ProcessingItem

○ Stream

SPE Adapter 
Layer



Build and Run

● Get SAMOA
$ git clone https://github.com/apache/incubator-samoa.git

$ cd incubator-samoa

● Build for a DSPE
$ mvn -Papex package

$ mvn -Pstorm package

$ mvn -Pflink package

● Run
$ bin/samoa apex ../SAMOA-Apex-0.4.0-incubating-SNAPSHOT.jar "PrequentialEvaluation 

-d /tmp/dump.csv 

-l (classifiers.trees.VerticalHoeffdingTree -p 2) 

-s (org.apache.samoa.streams.ArffFileStream 

-s HDFSFileStreamSource 

-f /tmp/bhupesh/input/covtypeNorm.arff)"



Prequential 
Evaluation Tasks 
in SAMOA

● Interleaved test-then-train
● Evaluates performance for online 

classifiers
○ Basic - Overall
○ Sliding Window Based - Most recent



Apache Apex 
DSPE

Distributed Stream 
Processing Engine

● Highly Scalable
● Highly Performant
● Fault Tolerant
● Stateful Recovery
● Built-in Operability



Project History ● Project development started in 2012 at 
DataTorrent

● Open-sourced in July 2015
● Apache Apex started incubation in August 

2015
● Top Level Apache Project in April 2016



Apex Application - DAG

● A DAG is composed of vertices (Operators) and edges (Streams).
● A Stream is a sequence of data tuples which connects operators at end-points called Ports
● An Operator takes one or more input streams, performs computations & emits one or more output streams

● Each operator is USER’s business logic, or built-in operator from the Apache Apex Malhar library
● Operator may have multiple instances that run in parallel



Apex - As a YARN Application



populateDag()

LineReader input = dag.addOperator("input", new 

LineReader());

Parser parser = dag.addOperator("parser", new 

Parser());

UniqueCounter counter = dag.addOperator("counter", new 

UniqueCounter());

ConsoleOutputOperator out = dag.addOperator("console", 

new ConsoleOutputOperator());

dag.addStream("lines", input.out, parser.in);

dag.addStream("words", parser.out, counter.data);

dag.addStream("counts", counter.count, out.input);

 Apache Apex API

Directed 
Acyclic 
Graph



Logical Building Blocks - Integration



Support for 
Windowing

● Streaming Windows - Finite time sliced 
windows - Bookkeeping in the engine

● Event-time windows- Supports concepts like 
watermarks, triggers and accumulators and 
sessions - Application level windowing

● Checkpoint Windows - Governs automatic 
periodic checkpointing of the operator state by 
the engine



Scalability - Partitioning

● Requirement: Low latency and high 
throughput for High Speed Input Streams

● Replicate (Partition) Operator Logic
● Specified at launch time
● Control the distribution of tuples to 

downstream partitions.
● Automatic pass through unifier or custom 

unifier to merge results
● Dynamic scaling!



Stream Codec - Distribution of tuples
B1

B2

B3

A U

B4



Stream Connections - Distribution of tuples

Key AllShuffle



Message 
Shuffling

Tuple based Hashcode for 
Stream codec



Key Based 
Shuffling

Key based Hashcode for 
Stream codec



All Based 
Shuffling 

(Broadcast)

Custom Partitioner to send 
all tuples to all 

downstream partitions



Iteration support in Apex

● Machine learning needs iterations
○ At the very least, a feedback loop. Example - VHT

● Apex Topology - Predominantly Acyclic - DAG
● Iteration support implemented - 

○ Core challenge was fault tolerance and correctness
● Apex maintains the DAG nature of the topology.

○ Cycles, although seemingly present in the logical DAG, maintain the DAG nature 
while execution.



Delay Operator

Iteration support

● Increment window id for all outgoing ports
● A note on Fault tolerance - 

○ Fabricates the control tuples at the start and at 
recovery

○ Must replay the first window data tuples at 
recovery

A B C A B C

D

Delay 
Operator

Window = xWindow = x+1



Challenges

Adding Runner for 
Apache Apex

● Differences in the topology builder APIs of 
SAMOA and Apex

● No concept of Ports in SAMOA
● On demand declaration of streams in SAMOA
● Cycles in topology - Delay Operator
● Serialization of Processor state during 

checkpointing. Also serialization of tuples.
● Number of tuples in a single window - Affects 

number of tuples in future windows coming 
from the delay operator



Case Study - VHT

Vertical 
Hoeffding 

Tree Restricted 
Parallelism

Delay 
Operator

D

Multiple Streams 
needing Multiple 

Ports

All based 
Parallelism

Key based 
Parallelism



Roadmap

SAMOA

● Stochastic Gradient Descent
● Adaptive + Boosting VHT
● Regression Tree + Gradient Boosted Decision 

Tree
● Distributed Data Stream Mining using Coresets
● Distributed Data Stream Mining using 

Sketches



Roadmap

Apex

● SQL support using Apache Calcite
● Apache Beam runner
● Enhanced support for Batch Processing
● Encrypted streams
● Support for Mesos
● Python support for operator logic and API
● Replacing running operators at runtime
● Dynamic attribute changes



Key Takeaways
● Samoa brings in a new set of Streaming Machine Learning 

Algorithms.
● Iterative processing enables Machine Learning on Apache 

Apex with fault tolerance, maintaining correctness of the 
workflow.

● Apex as another runner for Apache SAMOA



Resources

● Apache SAMOA - https://samoa.incubator.apache.org
● Apache Apex - http://apex.apache.org/
● Apache Apex Subscribe - http://apex.apache.org/community.html
● Apache Apex Presentations - http://www.slideshare.net/ApacheApex/presentations
● Apache Apex Download - https://apex.apache.org/downloads.html
● Twitter

○ @ApacheSamoa Follow - https://twitter.com/apachesamoa
○ @ApacheApex Follow - https://twitter.com/apacheapex

● Apache Apex Meetups - http://www.meetup.com/topics/apache-apex
● Apache Apex Webinars - https://www.datatorrent.com/webinars/
● Apache Apex Videos - https://www.youtube.com/user/DataTorrent

https://samoa.incubator.apache.org
http://apex.apache.org/
http://apex.apache.org/community.html
http://www.slideshare.net/ApacheApex/presentations
https://apex.apache.org/downloads.html
https://twitter.com/apachesamoa
https://twitter.com/apacheapex
http://www.meetup.com/topics/apache-apex
https://www.datatorrent.com/webinars/
https://www.youtube.com/user/DataTorrent


Questions ?



Thank You!


