
IBM Spark Technology Center

Apache Big Data Seville 2016

Apache SystemML
Declarative Machine Learning

Luciano Resende
IBM | Spark Technology Center

IBM Spark Technology Center

About Me

Luciano Resende (lresende@apache.org)

• Architect and community liaison at IBM – Spark Technology Center

• Have been contributing to open source at ASF for over 10 years

• Currently contributing to : Apache Bahir, Apache Spark, Apache Zeppelin and

Apache SystemML (incubating) projects

2

@lresende1975 http://lresende.blogspot.com/ https://www.linkedin.com/in/lresendehttp://slideshare.net/luckbr1975lresende

IBM Spark Technology Center

Origins of the SystemML Project

2007-2008: Multiple projects at IBM Research – Almaden involving machine

learning on Hadoop.

2009: A dedicated team for scalable ML was created.

2009-2010: Through engagements with customers, we observe how data scientists

create machine learning algorithms.

IBM Spark Technology Center

State-of-the-Art: Small Data

R or
Python

Data
Scientist

Personal
Computer

Data

Results

IBM Spark Technology Center

State-of-the-Art: Big Data

R or
Python

Data
Scientist

Results

Systems
Programmer

Scala

IBM Spark Technology Center

State-of-the-Art: Big Data

R or
Python

Data
Scientist

Results

Systems
Programmer

Scala

😞 Days	or	weeks	per	iteration
😞 Errors	while	translating	

algorithms

IBM Spark Technology Center

The SystemML Vision

R or
Python

Data
Scientist

Results

SystemML

IBM Spark Technology Center

The SystemML Vision

R or
Python

Data
Scientist

Results

SystemML

😃 Fast	iteration
😃 Same	answer

IBM Spark Technology Center

Running Example:
Alternating Least Squares

Problem: Movie

Recommendations

Movies

U
se
rs

i

j

User	i liked	
movie	j.

Movies	Factor

Us
er
s	F

ac
to
r

Multiply	these	
two	factors	to	
produce	a	less-
sparse	matrix.

×

New	nonzero	
values	become	

movies	
suggestions.

IBM Spark Technology Center

Alternating Least Squares (in R)
U = rand(nrow(X), r, min = -1.0, max = 1.0);
V = rand(r, ncol(X), min = -1.0, max = 1.0);
while(i < mi) {

i = i + 1; ii = 1;
if (is_U)

G = (W * (U %*% V - X)) %*% t(V) + lambda * U;
else

G = t(U) %*% (W * (U %*% V - X)) + lambda * V;
norm_G2 = sum(G ^ 2); norm_R2 = norm_G2;
R = -G; S = R;
while(norm_R2 > 10E-9 * norm_G2 & ii <= mii) {

if (is_U) {
HS = (W * (S %*% V)) %*% t(V) + lambda * S;
alpha = norm_R2 / sum (S * HS);
U = U + alpha * S;

} else {
HS = t(U) %*% (W * (U %*% S)) + lambda * S;
alpha = norm_R2 / sum (S * HS);
V = V + alpha * S;

}
R = R - alpha * HS;
old_norm_R2 = norm_R2; norm_R2 = sum(R ^ 2);
S = R + (norm_R2 / old_norm_R2) * S;
ii = ii + 1;

}
is_U = ! is_U;

}

IBM Spark Technology Center

Alternating Least Squares (in R)
1. Start with random factors.

2. Hold the Movies factor constant and

find the best value for the Users factor.
(Value that most closely approximates the original matrix)

3. Hold the Users factor constant and find

the best value for the Movies factor.

4. Repeat steps 2-3 until convergence.

U = rand(nrow(X), r, min = -1.0, max = 1.0);
V = rand(r, ncol(X), min = -1.0, max = 1.0);
while(i < mi) {

i = i + 1; ii = 1;
if (is_U)

G = (W * (U %*% V - X)) %*% t(V) + lambda * U;
else

G = t(U) %*% (W * (U %*% V - X)) + lambda * V;
norm_G2 = sum(G ^ 2); norm_R2 = norm_G2;
R = -G; S = R;
while(norm_R2 > 10E-9 * norm_G2 & ii <= mii) {

if (is_U) {
HS = (W * (S %*% V)) %*% t(V) + lambda * S;
alpha = norm_R2 / sum (S * HS);
U = U + alpha * S;

} else {
HS = t(U) %*% (W * (U %*% S)) + lambda * S;
alpha = norm_R2 / sum (S * HS);
V = V + alpha * S;

}
R = R - alpha * HS;
old_norm_R2 = norm_R2; norm_R2 = sum(R ^ 2);
S = R + (norm_R2 / old_norm_R2) * S;
ii = ii + 1;

}
is_U = ! is_U;

}

1

2

2

3

3

4

4

4

Every	line	has	a	clear	purpose!

IBM Spark Technology Center

Alternating Least Squares (spark.ml)

IBM Spark Technology Center

Alternating Least Squares (spark.ml)

IBM Spark Technology Center

Alternating Least Squares (spark.ml)

IBM Spark Technology Center

Alternating Least Squares (spark.ml)

IBM Spark Technology Center

25 lines’ worth of algorithm…

…mixed with 800 lines of performance code

IBM Spark Technology Center

Alternating Least Squares (in R)
U = rand(nrow(X), r, min = -1.0, max = 1.0);
V = rand(r, ncol(X), min = -1.0, max = 1.0);
while(i < mi) {

i = i + 1; ii = 1;
if (is_U)

G = (W * (U %*% V - X)) %*% t(V) + lambda * U;
else

G = t(U) %*% (W * (U %*% V - X)) + lambda * V;
norm_G2 = sum(G ^ 2); norm_R2 = norm_G2;
R = -G; S = R;
while(norm_R2 > 10E-9 * norm_G2 & ii <= mii) {

if (is_U) {
HS = (W * (S %*% V)) %*% t(V) + lambda * S;
alpha = norm_R2 / sum (S * HS);
U = U + alpha * S;

} else {
HS = t(U) %*% (W * (U %*% S)) + lambda * S;
alpha = norm_R2 / sum (S * HS);
V = V + alpha * S;

}
R = R - alpha * HS;
old_norm_R2 = norm_R2; norm_R2 = sum(R ^ 2);
S = R + (norm_R2 / old_norm_R2) * S;
ii = ii + 1;

}
is_U = ! is_U;

}

IBM Spark Technology Center

Alternating Least Squares (in R)

SystemML can compile and run this

algorithm at scale

No additional performance code

needed!

U = rand(nrow(X), r, min = -1.0, max = 1.0);
V = rand(r, ncol(X), min = -1.0, max = 1.0);
while(i < mi) {

i = i + 1; ii = 1;
if (is_U)

G = (W * (U %*% V - X)) %*% t(V) + lambda * U;
else

G = t(U) %*% (W * (U %*% V - X)) + lambda * V;
norm_G2 = sum(G ^ 2); norm_R2 = norm_G2;
R = -G; S = R;
while(norm_R2 > 10E-9 * norm_G2 & ii <= mii) {

if (is_U) {
HS = (W * (S %*% V)) %*% t(V) + lambda * S;
alpha = norm_R2 / sum (S * HS);
U = U + alpha * S;

} else {
HS = t(U) %*% (W * (U %*% S)) + lambda * S;
alpha = norm_R2 / sum (S * HS);
V = V + alpha * S;

}
R = R - alpha * HS;
old_norm_R2 = norm_R2; norm_R2 = sum(R ^ 2);
S = R + (norm_R2 / old_norm_R2) * S;
ii = ii + 1;

}
is_U = ! is_U;

}

(in	SystemML’s
subset	of	R)

IBM Spark Technology Center

How fast does it run?

Running time comparisons between machine learning algorithms

are problematic
•Different, equally-valid answers

•Different convergence rates on different data

•But we’ll do one anyway

IBM Spark Technology Center

Performance Comparison: ALS

0

5000

10000

15000

20000

1.2GB	(sparse	binary) 12GB 120GB

Ru
nn

in
g	
Ti
m
e	
(s
ec
)

R

MLLib

SystemML

>24h>24h

O
O
M

O
O
M

Synthetic	data,	0.01	sparsity,	10^5	products	× {10^5,10^6,10^7}	users.	Data	generated	by	multiplying	two	rank-50	matrices	of	normally-distributed	data,	
sampling	from	the	resulting	product,	then	adding	Gaussian	noise.	Cluster	of	6	servers	with	12	cores	and	96GB	of	memory	per	server.	Number	of	iterations	
tuned	so	that	all	algorithms	produce	comparable	result	quality.Details:

IBM Spark Technology Center

Takeaway Points

SystemML runs the R script in parallel
•Same answer as original R script

•Performance is comparable to a low-level RDD-based implementation

How does SystemML achieve this result?

IBM Spark Technology Center

The SystemML Runtime for Spark

Automates critical performance decisions
•Distributed or local computation?

•How to partition the data?

•To persist or not to persist?

Distributed vs local: Hybrid runtime
•Multithreaded computation in Spark Driver

•Distributed computation in Spark Executors

•Optimizer makes a cost-based choice

22

High-Level	Operations	(HOPs)
General representation of statements in the data
analysis language

Low-Level	Operations	(LOPs)
General representation of operations in the
runtime framework

High-level language
front-ends

Multiple execution
environments

Cost
Based

Optimizer

IBM Spark Technology Center

But wait, there’s more!

Many other rewrites

Cost-based selection of physical operators

Dynamic recompilation for accurate stats

Parallel FOR (ParFor) optimizer

Direct operations on RDD partitions

YARN and MapReduce support

IBM Spark Technology Center

Summary
Cost-based compilation of machine learning algorithms generates execution plans
• for single-node in-memory, cluster, and hybrid execution

• for varying data characteristics:

– varying number of observations (1,000s to 10s of billions), number of variables (10s to 10s of millions), dense and sparse data

• for varying cluster characteristics (memory configurations, degree of parallelism)

Out-of-the-box, scalable machine learning algorithms
• e.g. descriptive statistics, regression, clustering, and classification

"Roll-your-own" algorithms
•Enable programmer productivity (no worry about scalability, numeric stability, and optimizations)

•Fast turn-around for new algorithms

Higher-level language shields algorithm development investment from platform progression
•Yarn for resource negotiation and elasticity

•Spark for in-memory, iterative processing

IBM Spark Technology Center

Algorithms
Category Description

Descriptive Statistics
Univariate
Bivariate
Stratified Bivariate

Classification

Logistic Regression (multinomial)
Multi-Class SVM
Naïve Bayes (multinomial)
Decision Trees
Random Forest

Clustering k-Means

Regression

Linear Regression system of equations
CG (conjugate gradient)

Generalized Linear
Models (GLM)

Distributions: Gaussian, Poisson, Gamma, Inverse Gaussian, Binomial, Bernoulli
Links for all distributions: identity, log, sq. root, inverse, 1/μ2

Links for Binomial / Bernoulli: logit, probit, cloglog, cauchit

Stepwise
Linear
GLM

Dimension Reduction PCA

Matrix Factorization ALS
direct solve
CG (conjugate gradient descent)

Survival Models
Kaplan Meier Estimate
Cox Proportional Hazard Regression

Predict Algorithm-specific scoring
Transformation (native) Recoding, dummy coding, binning, scaling, missing value imputation
PMML models lm, kmeans, svm, glm, mlogit

25

IBM Spark Technology Center

Live Demo

26

IBM Spark Technology Center

Demo – Movie Recommendation

The demo environment
https://github.com/lresende/docker-systemml-notebook

27

Docker Image : lresende/systemml

Executor

Executor

Executor

IBM Spark Technology Center

Demo – Movie Recommendation

The Netflix Data Set

• Movies

• Historical Ratings (training set)

28

Movie Year Description
1 2003 Dinosaur	Planet

Movie User Rating Date
1 30878 4 2005-12-26

IBM Spark Technology Center 29

Demo – Movie Recommendation

IBM Spark Technology Center

What’s new on SystemML

30

IBM Spark Technology Center

VLDB 2016 Best Paper Award

VLDB 2016 Best Paper and Demonstration
Read Compressed Linear Algebra for

Large-Scale Machine Learning.

http://www.vldb.org/pvldb/vol9/p960-elgohary.pdf

31

IBM Spark Technology Center

SystemML 0.11-incubating Release

Features

• SystemML frames

• New MLContext API

• Transform functions based on

SystemML frames

• Various bug fixes

32

Experimental Features / Algorithms

• New built-in functions for deep

learning (convolution and pooling)

• Deep learning library (DML

bodied functions)

• Python DSL Integration

• GPU Support

• Compressed Linear Algebra

IBM Spark Technology Center

SystemML 0.11-incubating Release

New Algorithms

• Lasso

• kNN

• Lanczos

• PPCA

33

Deep Learning Algorithms

• CNN (Lenet)

• RBM

IBM Spark Technology Center

New SystemML Website

34

IBM Spark Technology Center

SystemML use cases

Using Deep Learning to assess Tumor proliferation by MIKE DUSENBERRY

35

Whole-Slide	Image: Sample	Image:

Deep	ConvNet

Tumor	
Score

IBM Spark Technology Center

Come contribute to SystemML

36

IBM Spark Technology Center

Apache SystemML

SystemML is open source!
•Announced in June 2015

•Available on Github since September 1

•First open-source binary release (0.8.0) in October 2015

•Entered Apache incubation in November 2015

•First Apache open-source binary release (0.9) available now

•Latest 0.11-incubating release just came out couple days ago

We are actively seeking contributors and users!

IBM Spark Technology Center

References

SystemML
http://systemml.apache.org

DML (R) Language Reference
https://apache.github.io/incubator-systemml/dml-language-reference.html

Algorithms Reference
http://systemml.apache.org/algorithms

Runtime Reference
https://apache.github.io/incubator-systemml/#running-systemml

38

Image source: http://az616578.vo.msecnd.net/files/2016/03/21/6359412499310138501557867529_thank-you-1400x800-c-default.gif

