
Real Time Data Analytics @
Uber
Ankur Bansal
November 14, 2016

About Me

● Sr. Software Engineer, Streaming Team @ Uber
○ Streaming team supports platform for real time data

analytics: Kafka, Samza, Flink, Pinot.. and plenty more
○ Focused on scaling Kafka at Uber’s pace

● Staff software Engineer @ Ebay
○ Build & scale Ebay’s cloud using openstack

● Apache Kylin: Committer, Emeritus PMC

Agenda

● Real time Use Cases
● Kafka Infrastructure Deep Dive
● Our own Development:

○ Rest Proxy & Clients
○ Local Agent
○ uReplicator (Mirrormaker)
○ Chaperone (Auditing)

● Operations/Tooling

Important Use Cases

Stream
Processing

Real-time Price Surging

SURGE
MULTIPLIERS

Rider eyeballs

Open car information

KAFKA

Real-time Machine Learning - UberEats ETD

● Fraud detection
● Share my ETA

 And many more ...

Apache Kafka is Uber’s Lifeline

DATA
PRODUCERS

DATA CONSUMERS

Real-time, Fast
Analytics

BATCH PIPELINE Applications
Data Science

Analytics
Reporting

RIDER APP

DRIVER APP

API / SERVICES

DISPATCH
(gps logs)

Mapping &
Logistic

Ad-hoc exploration

Alerts,
Dashboards

Kafka ecosystem @ Uber

Debugging

REAL-TIME PIPELINE

Mobile App

100s of billion

100s TB

Messages/day

bytes/day

Kafka cluster stats

Multiple data centers

Kafka Infrastructure Deep Dive

Requirements

● Scale to 100s Billions/day → 1 Trillion/day
● High Throughput (Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms)
● Reliability - 99.99% (#Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC

Kafka Pipeline

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Aggregate
Kafka

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Local
Agent

Secondary
Kafka

DataCenter-I

uReplicator

DataCenter-III

DataCenter-II

Kafka Pipeline: Data Flow

Application Process

ProxyClient

Kafka Proxy Server uReplicator

1

2

3 5 7

64 8

Regional Kafka Aggregate Kafka

Kafka Clusters

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Aggregate
Kafka

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Local
Agent

Secondary
Kafka

DataCenter-I

uReplicator

DataCenter-III

DataCenter-II

Kafka Clusters

● Use case based clusters
○ Data (async, reliable)
○ Logging (High throughput)
○ Time Sensitive (Low Latency e.g. Surge, Push

notifications)
○ High Value Data (At-least once, Sync e.g. Payments)

● Secondary cluster as fallback
● Aggregate clusters for all data topics.

Kafka Clusters

● Scale to 100s Billions/day → 1 Trillion/day
● High Throughput (Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms)
● Reliability - 99.99% (#Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC

Kafka Rest Proxy

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Aggregate
Kafka

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Local
Agent

Secondary
Kafka

DataCenter-I

uReplicator

DataCenter-III

DataCenter-II

Why Kafka Rest Proxy ?

● Simplified Client API
● Multi-lang support (Java, NodeJs, Python, Golang)
● Decouple client from Kafka broker

○ Thin clients = operational ease
○ Less connections to Kafka brokers
○ Future kafka upgrade

● Enhanced Reliability
○ Primary & Secondary Kafka Clusters

Kafka Rest Proxy: Internals

Kafka Rest Proxy: Internals

Kafka Rest Proxy: Internals

● Based on Confluent’s open sourced Rest Proxy
● Performance enhancements

○ Simple http servlets on jetty instead of Jersey
○ Optimized for binary payloads.
○ Performance increase from 7K* to 45-50K QPS/box

● Caching of topic metadata.
● Reliability improvements*

○ Support for Fallback cluster
○ Support for multiple Producers (SLA based segregation)

● Plan to contribute back to community

*Based on benchmarking & analysis done in Jun ’2015

Rest Proxy: performance (1 box)

Message rate (K/second) at single node

En
d-

en
d

La
te

nc
y

(m
s)

Kafka Clusters + Rest Proxy

● Scale to 100s Billions/day → 1 Trillion/day
● High Throughput (Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms)
● Reliability - 99.99% (#Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC

Kafka Clients

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Aggregate
Kafka

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Local
Agent

Secondary
Kafka

DataCenter-I

uReplicator

DataCenter-III

DataCenter-II

Client Libraries

● Support for multiple clusters.
● High Throughput

○ Non-blocking, async, batching
○ <1ms produce latency for clients
○ Handles Throttling/BackOff signals from Rest Proxy

● Topic Discovery
○ Discovers the kafka cluster a topic belongs
○ Able to multiplex to different kafka clusters

● Integration with Local Agent for critical data

Client Libraries

Add
Figure

What if there is
network glitch /
outage?

Client Libraries

Add
Figure

Kafka Clusters + Rest Proxy + Clients

● Scale to 100s Billions/day → 1 Trillion/day
● High Throughput (Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms)
● Reliability - 99.99% (#Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC

Local Agent

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Aggregate
Kafka

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Local
Agent

Secondary
Kafka

DataCenter-I

uReplicator

DataCenter-III

DataCenter-II

Local Agent

● Local spooling in case of downstream outage/backpressure
● Backfills at the controlled rate to avoid hammering

infrastructure recovering from outage
● Implementation:

○ Reuses code from rest-proxy and kafka’s log module.
○ Appends all topics to same file for high throughput.

Local Agent Architecture

Add
Figure

Local Agent in Action

Add
Figure

Kafka Clusters + Rest Proxy + Clients + Local Agent

● Scale to 100s Billions/day → 1 Trillion/day
● High Throughput (Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms)
● Reliability - 99.99% (#Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC

uReplicator

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Aggregate
Kafka

Applications
[ProxyClient]

Kafka REST
Proxy

Regional
Kafka

Local
Agent

Secondary
Kafka

DataCenter-I

uReplicator

DataCenter-III

DataCenter-II

Traffic from DC1

Traffic from DC3

Traffic from DC2
App box
Dispatch
Mobile

API

Kafka8 Aggregation
Cluster

Mirror
Maker

Multi-DC data flow

http calls

CONFIDENTIAL

>> INSERT SCREENSHOT HERE <<

Mirrormaker : existing problems

● New Topic added
● New partitions added
● Mirrormaker bounced
● New mirrormaker added

uReplicator: In-house solution

Zookeeper
Helix MM
Controller

Helix
Agent Thread 1

Thread N
Topic-partition

Helix
Agent Thread 1

Thread N
Topic-partition

Helix
Agent Thread 1

Thread N
Topic-partition

MM worker1 MM worker2 MM worker3

uReplicator

Zookeeper
Helix MM
Controller

Helix
Agent Thread 1

Thread N
Topic-partition

Helix
Agent Thread 1

Thread N
Topic-partition

Helix
Agent Thread 1

Thread N
Topic-partition

MM worker1 MM worker2 MM worker3

Kafka Clusters + Rest Proxy + Clients + Local Agent

● Scale to 100s Billions/day → 1 Trillion/day
● High Throughput (Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms)
● Reliability - 99.99% (#Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC

uReplicator

● Running in production for 1+ year
● Open sourced: https://github.com/uber/uReplicator
● Blog: https://eng.uber.com/ureplicator/

https://github.com/uber/uReplicator
https://eng.uber.com/ureplicator/

Chaperone - E2E Auditing

Chaperone Architecture

CONFIDENTIAL

>> INSERT SCREENSHOT HERE <<

Chaperone : Track counts

CONFIDENTIAL

>> INSERT SCREENSHOT HERE <<

Chaperone : Track Latency

Chaperone

● Running in production for 1+ year
● Planning to open source in ~2 Weeks

At-least Once Kafka

Why do we need it?

Application Process

ProxyClient

Kafka Proxy Server uReplicator

1

2

3 5 7

64 8

Regional Kafka Aggregate Kafka

● Most of infrastructure tuned for high throughput
○ Batching at each stage
○ Ack before produce (ack’ed != committed)

● Single node failure in any stage leads to data loss
● Need a reliable pipeline for High Value Data e.g. Payments

How did we achieve it?

● Brokers:
○ min.insync.replicas=2, can only torrent one node failure
○ unclean.leader.election= false, need to wait until the old

leader comes back
● Rest Proxy:

○ Partition Failover
● Improved Operations:

○ Replication throttling, to reduce impact of node bootstrap
○ Prevent catching up nodes to become ISR

Operations/Tooling

Partition Rebalancing

Add
Figure

Partition Rebalancing

● Calculates partition
imbalance and inter-broker
dependency.

● Generates & Executes
Rebalance Plan.

● Rebalance plans are
incremental, can be stopped
and resumed.

● Currently on-demand,
Automated in the future.

XFS vs EXT4

Add
Figure

Summary: Scale

● Kafka Brokers:
○ Multiple Clusters per DC
○ Use case based tuning

● Rest Proxy to reduce connections and better batching
● Rest Proxy & Clients

○ Batch everywhere, Async produce
○ Replace Jersey with Jetty

● XFS

Summary: Reliability

● Local Agent
● Secondary Clusters
● Multi Producer support in Rest Proxy
● uReplicator
● Auditing via Chaperone

Future Work

● Open source contribution
○ Chaperone
○ Toolkit

● Data Lineage
● Active Active Kafka
● Chargeback
● Exactly once mirroring via uReplicator

Questions ?

ankur@uber.com

mailto:ankur@uber.com
mailto:ankur@uber.com

Extra Slides

Kafka Durability (acks=1)

Broker 1

100

101

102

103

Broker 2

100

101

Broker 3

100

101

Leader

Committed

Producer

Acked

Kafka Durability (acks=1)

Broker 1

100

101

102

103

Broker 2

100

101

Broker 3

100

101

Leader

Committed

Producer

Failed

Acked

Kafka Durability (acks=1)

Broker 1

100

101

102

103

Broker 2

100

101

Broker 3

100

101

Leader

Committed

Producer

Kafka Durability (acks=1)

Broker 1

100

101

102

103

Broker 2

100

101

104

105

106

Broker 3

100

101

104

105

Leader

Committed

Producer

Old HW

Kafka Durability (acks=1)

Broker 1

100

101

102

103

Broker 2

100

101

104

105

106

Broker 3

100

101

104

105

Leader

Committed

Producer

X

Old HW
X

Kafka Durability (acks=1)

Broker 1

100

101

104

105

106

Broker 2

100

101

104

105

106

Broker 3

100

101

105

106

Leader

Committed

Producer

data loss!!

Distributed Messaging system

* Supported in Kafka 0.8+

● High throughput
● Low latency
● Scalable
● Centralized
● Real-time

What is Kafka?

● Distributed
● Partitioned
● Replicated
● Commit Log

Broker 1 Broker 2 Broker 3

ZooKeeper

What is Kafka?

● Distributed
● Partitioned
● Replicated
● Commit Log

Broker 1

Partition 0

Broker 2

Partition 1

Broker 3

Partition 2

ZooKeeper

What is Kafka?

● Distributed
● Partitioned
● Replicated
● Commit Log

Broker 1

Partition 0

Partition 2

Broker 2

Partition 1

Partition 0

Broker 3

Partition 2

Partition 1

ZooKeeper

What is Kafka?

● Distributed
● Partitioned
● Replicated
● Commit Log

Broker 1

Partition 0

0 1 2 3

Partition 2

0 1 2 3

Broker 2

Partition 1

0 1 2 3

Partition 0

0 1 2 3

Broker 3

Partition 2

0 1 2 3

Partition 1

0 1 2 3

ZooKeeper

Kafka Concepts

