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About Me

● Sr. Software Engineer, Streaming Team @ Uber
○ Streaming team supports platform for real time data 

analytics: Kafka, Samza, Flink, Pinot.. and plenty more
○ Focused on scaling Kafka at Uber’s pace

● Staff software Engineer @ Ebay
○ Build & scale Ebay’s cloud using openstack 

● Apache Kylin: Committer, Emeritus PMC 



Agenda

● Real time Use Cases 
● Kafka Infrastructure Deep Dive
● Our own Development:

○ Rest Proxy & Clients
○ Local Agent
○ uReplicator (Mirrormaker)
○ Chaperone (Auditing)

● Operations/Tooling



Important Use Cases
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Real-time Machine Learning - UberEats ETD





● Fraud detection
● Share my ETA

         And many more ... 



Apache Kafka is Uber’s Lifeline 
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Kafka Infrastructure Deep Dive 



Requirements

● Scale to 100s Billions/day → 1 Trillion/day 
● High Throughput ( Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms )
● Reliability - 99.99% ( #Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC
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Kafka Pipeline: Data Flow
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Kafka Clusters
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Kafka Clusters

● Use case based clusters
○ Data (async, reliable)
○ Logging (High throughput)
○ Time Sensitive (Low Latency e.g. Surge, Push 

notifications)
○ High Value Data (At-least once, Sync e.g. Payments)

● Secondary cluster as fallback 
● Aggregate clusters for all data topics.



Kafka Clusters

● Scale to 100s Billions/day → 1 Trillion/day 
● High Throughput ( Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms )
● Reliability - 99.99% ( #Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC



Kafka Rest Proxy
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Why Kafka Rest Proxy ?

● Simplified Client API 
● Multi-lang support (Java, NodeJs, Python, Golang)
● Decouple client from Kafka broker

○ Thin clients = operational ease
○ Less connections to Kafka brokers
○ Future kafka upgrade

● Enhanced Reliability
○ Primary & Secondary Kafka Clusters



Kafka Rest Proxy: Internals



Kafka Rest Proxy: Internals



Kafka Rest Proxy: Internals

● Based on Confluent’s open sourced Rest Proxy 
● Performance enhancements

○ Simple http servlets on jetty instead of Jersey 
○ Optimized for binary payloads. 
○ Performance increase from 7K* to 45-50K  QPS/box

● Caching of topic metadata. 
● Reliability improvements*

○ Support for Fallback cluster 
○ Support for multiple Producers (SLA based segregation)

● Plan to contribute back to community

*Based on benchmarking & analysis done in Jun ’2015 



Rest Proxy: performance (1 box)
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Kafka Clusters + Rest Proxy

● Scale to 100s Billions/day → 1 Trillion/day 
● High Throughput ( Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms )
● Reliability - 99.99% ( #Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC



Kafka Clients
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Client Libraries

● Support for multiple clusters. 
● High Throughput

○ Non-blocking, async, batching 
○ <1ms  produce latency for clients
○ Handles Throttling/BackOff signals from Rest Proxy

● Topic Discovery
○ Discovers the kafka cluster a topic belongs 
○ Able to multiplex to different kafka clusters 

●  Integration with Local Agent for critical data



Client Libraries
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Kafka Clusters + Rest Proxy + Clients

● Scale to 100s Billions/day → 1 Trillion/day 
● High Throughput ( Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms )
● Reliability - 99.99% ( #Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC



Local Agent
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Local Agent

● Local spooling in case of downstream outage/backpressure
● Backfills at the controlled rate to avoid hammering 

infrastructure recovering from outage
● Implementation: 

○ Reuses code from rest-proxy and kafka’s log module. 
○ Appends all topics to same file for high throughput.



Local Agent Architecture
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Local Agent in Action
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Kafka Clusters + Rest Proxy + Clients + Local Agent

● Scale to 100s Billions/day → 1 Trillion/day 
● High Throughput ( Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms )
● Reliability - 99.99% ( #Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC
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Traffic from DC1
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CONFIDENTIAL

>> INSERT SCREENSHOT HERE <<

Mirrormaker : existing problems

● New Topic added
● New partitions added
● Mirrormaker bounced
● New mirrormaker added



uReplicator: In-house solution
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uReplicator
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Kafka Clusters + Rest Proxy + Clients + Local Agent

● Scale to 100s Billions/day → 1 Trillion/day 
● High Throughput ( Scale: 100s TB → PB)
● Low Latency for most use cases(<5ms )
● Reliability - 99.99% ( #Msgs Available /#Msgs Produced)
● Multi-Language Support
● Tens of thousands of simultaneous clients.
● Reliable data replication across DC



uReplicator

● Running in production for 1+ year 
● Open sourced: https://github.com/uber/uReplicator
● Blog: https://eng.uber.com/ureplicator/

https://github.com/uber/uReplicator
https://eng.uber.com/ureplicator/


Chaperone - E2E Auditing



Chaperone Architecture



CONFIDENTIAL

>> INSERT SCREENSHOT HERE <<

Chaperone : Track counts



CONFIDENTIAL

>> INSERT SCREENSHOT HERE <<

Chaperone : Track Latency



Chaperone

● Running in production for 1+ year 
● Planning to open source in ~2 Weeks 



At-least Once Kafka



Why do we need it?
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● Most of infrastructure tuned for high throughput 
○ Batching at each stage 
○ Ack before produce (ack’ed !=  committed)

● Single node failure in any stage leads to data loss
● Need a reliable pipeline for High Value Data e.g. Payments



How did we achieve it?

● Brokers:
○ min.insync.replicas=2, can only torrent one node failure
○ unclean.leader.election= false, need to wait until the old 

leader comes back
● Rest Proxy:

○ Partition Failover
● Improved Operations:

○ Replication throttling, to reduce impact of node bootstrap 
○ Prevent catching up nodes to become ISR



Operations/Tooling



Partition Rebalancing
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Partition Rebalancing

● Calculates partition 
imbalance and inter-broker 
dependency.

● Generates & Executes 
Rebalance Plan.

● Rebalance plans are 
incremental, can be stopped 
and resumed.

● Currently on-demand, 
Automated in the future.



XFS vs EXT4
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Summary: Scale

● Kafka Brokers:
○ Multiple Clusters per DC
○ Use case based tuning

● Rest Proxy to reduce connections and better batching
● Rest Proxy & Clients 

○ Batch everywhere,  Async produce 
○ Replace Jersey with Jetty 

● XFS

 



Summary: Reliability

● Local Agent 
● Secondary Clusters 
● Multi Producer support in Rest Proxy
● uReplicator 
● Auditing via Chaperone



Future Work

● Open source contribution
○ Chaperone
○ Toolkit

● Data Lineage
● Active Active Kafka
● Chargeback
● Exactly once mirroring via uReplicator



Questions ?

ankur@uber.com

mailto:ankur@uber.com
mailto:ankur@uber.com


Extra Slides



Kafka Durability (acks=1)
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Kafka Durability (acks=1)
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Kafka Durability (acks=1)
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Kafka Durability (acks=1)
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Kafka Durability (acks=1)
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Kafka Durability (acks=1)
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Distributed Messaging system

* Supported in Kafka 0.8+

● High throughput
● Low latency
● Scalable
● Centralized
● Real-time



What is Kafka?

● Distributed
● Partitioned
● Replicated
● Commit Log
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What is Kafka?

● Distributed
● Partitioned
● Replicated
● Commit Log
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Kafka Concepts


