
Android: protecting the kernel

Jeff Vander Stoep
August 26th, 2016

$ whoami

● Jeff Vander Stoep - jeffv@google.com

@jeffvanderstoep

● Android Security since 2014

● Focus on system hardening

● Software Engineer

First - some good news

● Most kernel bugs discussed are not directly reachable
to untrusted code, due to Android’s security model.
Android Nougat further reduces the attack surface of
the kernel.

● New kernel defenses address our biggest category of
kernel bugs. (more on this later)

Sandbox &
permissions

Runtime
Security Checks

Verify Apps
Warning

Verify Apps
Consent

Install
Confirmation

Unknown
Sources
Warning

Google Play

More good news

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Agenda
● Kernel bugs in Android

○ Focus on biggest categories (we only have 45 minutes)
● Bugs by cause

○ Mitigations - memory protections
○ Gaps

● Bugs by reachability
○ Mitigations - attack surface reduction
○ Gaps

● Future work

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Kernel bugs have a long life. Fixing
bugs is necessary but not sufficient!

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Goal:

Use data on security vulnerabilities to
prioritize mitigation development and

adoption

About the data

● Includes kernel bugs January 2014 -> April 2016

● Includes low → critical severity kernel bugs

● Moderate → critical taken directly from public Nexus security

bulletins

● Low severity bugs included because the definition of low has

changed over time (many bugs previously listed as low

considered moderate under new ratings)

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

“At the operating system level, the
Android platform provides the security of

the Linux kernel…”
source.android.com

Security from the kernel

● Address space separation/process isolation

● unix permissions

● DAC capabilities

● SELinux

● seccomp

● namespaces

● ...

2014 2015 2016

Android security bugs by year

Data: Jan 2014 → April 2016

Why the rise in kernel bugs?

● Lockdown of userspace makes UID 0 significantly less

useful.

● 2016 is the first year > 50% of devices in ecosystem

have selinux in global enforcing.

● Kernel bugs payout more $$$ (Android vulnerability

rewards)

Where Android’s kernel bugs are born

Data: Jan 2014 → April 2016

Data includes multiple vendors

Some vendor drivers are in
upstream, others are out-of-tree

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Kernel defenses protect against in-tree
AND out-of-tree vulnerabilities

What causes Android’s kernel bugs?

Bugs from upstream

kernel and device

specific bugs
Data: Jan 2014 → April 2016

What causes kernel bugs?

Vendor drivers Core kernel
Data: Jan 2014 → April 2016

Mitigations - missing/incorrect bounds check

● Hardened usercopy

○ Protect against incorrect bounds

checking in copy_*_user()

● PAN emulation

○ Protect against kernel access to

userspace bypassing hardened

usercopy changes.

Landing in
upstream kernel!

Mitigations - missing/incorrect bounds check

● Stack protector strong

○ protects against stack buffer overflows

● KASLR (arm64 android-4.4 kernel)

○ Makes code reuse attacks probabilistic

● PXN - make userspace non-executable for the kernel

○ Protects against ret2user attacks

● RODATA - mark kernel memory as read-only/no-execute

○ Makes code non-writeable, and data non-executable

Mitigations - null pointer dereference

● CONFIG_LSM_MMAP_MIN_ADDR

○ Make null pointer dereference

unexploitable (just crash)

● PAN emulation also make null pointer

dereference non-exploitable

Gaps - code review

Code quality of upstream is significantly better than device specific drivers

● What can be done to enforce better code quality?

○ Compiler changes e.g. integer overflow checking

○ Scripts e.g. checkpatch.pl

○ Runtime changes - e.g. PAN enforce proper use of copy_*_user()

○ KASAN

○ Constification

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Attack surface reduction

Remove or restrict access to entry
points into the kernel

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Attack surface reduction

Gate access to kernel provided
developer tools in developer settings.

How are kernel bugs reached - driver/subsystem

Data: Jan 2014 → April 2016

Includes many bugs only

reachable by root or other

privileged processes.

Bugs reachable by unprivileged apps

Data: Jan 2014 → April 2016

Fix all bugs, but prioritize

mitigation development for bugs

that are reachable by apps

More on this later...

Case study: Wifi driver bugs
● Every app-reachable bug should have been protected by a

CAPABLE(CAP_NET_ADMIN) check.

● Relying on developers to correctly implement in-code checks is risky.

● Better to have privileged behavior guarded by auditable security policy.

● Many wifi driver bugs were reachable via local unix sockets! Add strong policy

around all socket types.

all bugs bugs reachable by apps

How are kernel bugs reached - syscall (before mitigations)

Data: Jan 2014 → April 2016

100% of perf vulns
introduced in vendor
customizations

Mitigations - attack surface reduction
Ioctl command whitelisting in SELinux

● Wifi
○ Originally hundreds of ioctl commands → 29 whitelisted safe network socket ioctls

○ Blocks access to all bugs without restricting legitimate access.

○ Unix sockets: wifi ioctls reachable by local unix sockets :(Hundreds → 8 whitelisted unix socket

ioctls

○ No ioctls allowed on other socket types including generic and netlink sockets

● GPU
○ e.g. Shamu originally 36 -> 16 whitelisted commands

○ Ioctl commands needed varies by device but < 50% needed seems consistent across KGSL drivers

Mitigations - attack surface reduction

● Restrict access to perf

○ Access to perf_event_open() is disabled by default.

○ Developers may re-enable access via debug shell

● Remove access to debugfs

○ All app access to debugfs removed in N

● Remove default access to /sys

○ App access to files in /sys must be whitelisted

● Seccomp required for all devices (minijail shoutout!)

Impact of mitigations

Because most bugs are driver specific, effectiveness of mitigations varies across

devices. In general most previously reachable bugs were made unreachable

● Case study of bugs reachable by apps on Nexus 6 (Shamu)

○ 100% of wifi bugs blocked

○ 50% of GPU bugs blocked

○ 100% of debugfs bugs blocked

○ 100% of perf bugs blocked (by default)

Gaps - Attack surface reduction

● Need more/better controls over kernel feature accessibility.

○ Controls allow us to do what’s best for both Linux developers

and users of Linux based products.

● Argument inspection for seccomp

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Future work

Kernel devs, we need more/better
safety features (seat belts)!

Sometimes seat belts are
inconvenient…

Those “other” categories - potential attack surface
reduction

Architecture syscalls provided by
kernel syscalls in bionic reduction (%)

arm 364 204 44

arm64 271 198 27

x86 373 203 46

x86_64 326 199 39

Those “other” categories - Memory safety

Where do we go from here?

● Kernel self protection project - get involved!
● Principle of Least Privilege
● Attack Surface Reduction
● Defense-in-depth
● Continue to find/fix bugs!

QUESTIONS ?

