
An Introduction to SPI-NOR Subsystem

By

Vignesh R

Texas Instruments India

vigneshr@ti.com

About me

• Software Engineer at Texas Instruments India

• Part of Linux team that works on supporting various TI SoCs in mainline kernel

• I work on supporting peripheral drivers on TI SoCs, mainly QSPI, UART,

Touchscreen and USB

• This presentation is mainly based on my experience of getting QSPI controllers

on TI platforms to work in mainline kernel

What’s in the presentation?

• SPI-NOR flash and types

• Communication with SPI-NOR flashes

• SPI-NOR framework

• SPI-NOR controllers and types

• Writing a controller driver

• Ongoing work and what’s missing

What is a SPI-NOR Flash?

• Array of storage cells that behave like NOR gate → NOR flash

• Two types of NOR flash:

– Parallel NOR

– Serial NOR

• Serial NOR flash that is interfaced to SoC via SPI bus and follows SPI protocol

→ SPI-NOR Flash

• Reduced pin counts compared to parallel NOR

Why SPI-NOR flash?

Property NAND eMMC SPI-NOR

Density Upto 128GB Upto 128GB Upto 512MB

Bus width x8/x16 x4/x8 x1/x2/x4/x8

Read speed Slow random access Similar to NAND Fast random access

Write Fast writes Fast writes Slower

Setup Requirements ECC and bad block

management

Needs tuning

(for higher speed)

No overhead

Typical SPI-NOR flash

SPI

Controller

SPI-NOR

Flash

SCLK

MOSI

MISO

WP#

HOLD#

CS#

Multi IO Flash

QSPI

Controller

QSPI-

NOR

Flash

SCLK

IO0

IO1

WP#/IO2

HOLD#/IO3

CS#

There are:

 Dual IO, Quad IO and Octal IO flashes

SPI-NOR Flash Hardware

• Flash is composed of Sectors and Pages

• Smallest erasable block size is called Sector

– May be 4/32/64/256 KB

• Sectors sub-divided into Pages

– May be 256/512 bytes

– Flash program is usually in page size chunks (though not necessary)

• Need to send Write Enable(WREN) command before a write or erase operation

• Most flashes support Read ID(RDID) command for flash detection

Communication Protocol

Command

Phase

(1 byte)

Address

Phase

(3/4 bytes)

Wait

Phase

(n cycles)

Data

Phase

(n bytes)

Types of Controllers

• Traditional SPI controllers

– Provide direct access to SPI bus

– Are not aware of the connected SPI slave device

– Normally does not have deep FIFOs

• SPI-NOR Controllers

– Aware of flash communication protocol (command, address and data phase)

– Low latency access to flash, read pre-fetch and large HW buffer

– May not provide direct SPI bus access

• Specialized SPI Controllers

– Support both traditional SPI devices and Flashes

– Typically, provides accelerated SPI-NOR access

SPI-NOR Framework

• Merged in v3.16

• Under Memory Technology Devices(MTD) Subsystem:

– drivers/mtd/spi-nor/spi-nor.c

• Derived from pre-existing m25p80 flash driver code

• Why SPI-NOR framework?

– Support controllers that only support flash slave devices

– Support SPI-NOR/Specialized SPI controller hardware

• Know flash specific data like opcodes, address width, mode of operation etc

– Detect connected flash and choose suitable protocol for read/write/erase

Traditional SPI Controller

CPU/DMA

SPI-

NOR

Flash

TX

FIFO

RX

FIFO

Shifter

Config Regs

Data

SPI SCLK

CS

CPU

Accessing flash via SPI framework

MTD framework

SPI-NOR framework

m25p80

SPI core

SPI controller driver

Hardware (Controller + Flash)

• MTD layer abstracts all type of raw flash

based devices like NAND, NOR and similar

devices.

• Provides char(/dev/mtdX) and

block(/dev/mtdblockX) device support

• Abstracts flash specific properties like

sector, page and ECC handling

• Wear and bad block handling using UBI

• Handles partitioning of flash storage space

• /proc/mtd lists all devices

Accessing flash via SPI framework

MTD framework

SPI-NOR framework

m25p80

SPI core

SPI controller driver

Hardware (Controller + Flash)

• Handle SPI-NOR specific abstractions

– Implement read, write and erase of flash

– Detect and configure connected flash

– Provide flash size, erase size and page

size information to MTD layer

• Provides interface for dedicated SPI-

NOR controllers drivers

– Provide opcode, address width, dummy

cycles information

• Support Multi IO flashes

Accessing flash via SPI framework

MTD framework

SPI-NOR framework

m25p80

SPI core

SPI controller driver

Hardware (Controller + Flash)

• Translation layer between SPI-NOR

framework and SPI core

• Convert command, address and data

phases into spi_transfer structs

based on data that is supplied by SPI-

NOR (via spi_nor struct)

• Generate spi_message objects for

spi_transfer and submit to SPI core

for read/write or other flash operations

Accessing flash via SPI framework

MTD framework

SPI-NOR framework

m25p80

SPI core

SPI controller driver

Hardware (Controller + Flash)

• SPI core validates, queues and sends SPI

messages from upper layer to controller

drivers

• SPI controller driver writes data to TX

FIFO and reads data from RX FIFO

• Does not distinguish transfers as

command or data or address

SPI-NOR controller-MMIO interface

Flash Command

Generator

TX FIFO

RX

FIFO

Shifter

Data

SPI SCLK

CS

IP Regs

Memory

Mapped

Interface

Config

Interface

SRAM

Addr: 0x8000000

Addr: 0x8FFFFFF

QSPI-

NOR

Flash

Accessing flash via SPI-NOR framework

• SPI-NOR layer provides information

about the connected flash

• Passes spi_nor struct:

– Size, page size, erase size, opcode,

address width, dummy cycles and mode

• Controller configures IP registers

• Controller configures flash registers as

requested by framework

• Controller drivers implements reads

and writes

– MMIO interface or from internal HW

buffer

MTD Layer

SPI-NOR Layer

SPI-NOR
controller driver

Hardware (SPI-NOR
Controller + Flash)

m25p80

SPI core

SPI controller driver

Hardware
(Controller + Flash)

Specialized SPI controller-MMIO interface

TX FIFO

RX

FIFO

SHIFTER

DATA

SPI SCLK

CS

IP Regs

Memory

mapped

interface

Config

interface

SRAM

Addr: 0x8000000

Addr: 0x8FFFFFF

QSPI-

NOR

FLASH
Flash Command

Generator

Direct access path

Specialized SPI controllers with MMIO support

• SPI flash is configured using m25p80

and regular SPI interface

• Usually writes and erase operations are

also done via SPI regular interface

using spi_message struct

MTD Layer

SPI-NOR Layer

SPI-NOR controller

Hardware (SPI-NOR
Controller + Flash)

m25p80

SPI core

SPI controller
driver

Hardware
(Controller + Flash)

MTD Layer

SPI-NOR Layer

SPI-NOR
controller

SPI-NOR
HW

 m25p80

 SPI core

SPI controller driver

Hardware (Controller + Flash)

Specialized SPI controllers with MMIO support

• Flash read operation is done via MMIO

interface.

• m25p80 driver calls spi_flash_read()

API of SPI core

• Drivers of SPI controller with MMIO

interface implement spi_flash_read()

• spi_flash_read_message struct

provides info related to flash

SPI flash read

interface

MMIO i/f

Where to put your driver?

• Supports any type of SPI device and direct access to bus

– Use SPI framework

• Supports only SPI-NOR flashes and optimized for low latency flash access

– Use SPI-NOR framework

• Supports all SPI devices and has special interface for flash

– Use SPI framework and also implement spi_flash_read() interface

Writing a SPI-NOR controller driver

• Following four callbacks need to be implemented:

int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);

int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);

ssize_t (*read)(struct spi_nor *nor, loff_t from, size_t len,

 u_char *read_buf);

ssize_t (*write)(struct spi_nor *nor, loff_t to, size_t len,

 const u_char *write_buf);

• Call spi_nor_scan() to ask SPI-NOR framework to discover connected flash

• Then call mtd_device_register()

Cadence QSPI DT fragment

qspi: qspi@2940000 {

 compatible = "cdns,qspi-nor";

 #address-cells = <1>;

 #size-cells = <0>;

 reg = <0x02940000 0x1000>,

 <0x24000000 0x4000000>;

 interrupts = <GIC_SPI 198 IRQ_TYPE_EDGE_RISING>;

 flash0:flash@0 {

 compatible = "jedec,spi-nor";

 reg = <0>;

 spi-max-frequency = <96000000>;

 };

 flash1: flash@1 {

 …

 };

 };

Performance Comparison

Parameter SPI transfers SPI-NOR

controller driver

SPI core’s flash

read interface

Read Speed 800 KB/s 4MB/s 4MB/s

CPU Load ~70% ~100% ~100%

Read with DMA No HW support No support in

framework

20MB/s

(15% CPU load)

Write Speed 400KB/s 400KB/s 400KB/s

Using TI QSPI controller on DRA7 SoCs under different framework with SPI bus

rate of 64MHz

Ongoing work

• Choosing the right opcode based on controller and flash capabilities

– Making sure communication with flash is stateless

– Use opcodes that support 4 byte addressing

• Choosing 1-1-4 or 1-4-4 or 4-4-4 mode

– Quad Enable (QE) bit behavior is different on different flashes

• Spansion supports (1-1-4 and 4-4-4) but Micron supports only (4-4-4)

• Handling different sector sizes

– A Flash may support 32K/64K/256K sector and optionally 4K sectors

• Serial Flash Discoverable Parameters(JESD216) and Basic Flash Parameter

Table Support (merged in v4.14)

• Octal mode and DTR mode support

Adding DMA support

• Flash filesystems and mtdblock are not written with DMA in mind

– Uses vmalloc’d buffers

– Known to cause problems with VIVT caches

– Buffers backed by LPAE memory are not accessible by DMA engines

• One solution is to use bounce buffers

– Drivers like TI QSPI use bounce buffers

• SPI core has its own vmalloc buffer to sg_list mapping logic

– Individual framework/drivers have own implementation

• Can DMA Mapping APIs be modified to map vmalloc’d for DMA for wider

community benefit?

– Provide bounce buffer, if mapping is not possible

References

• Various Flash datasheets: Micron, Spansion and Macronix

• JEDEC Standards: JESD216, JESD216A and JESD216B (www.jedec.org)

• http://www.linux-mtd.infradead.org/index.html

• MTD mailing list (linux-mtd@lists.infradead.org) archive.

• https://git.kernel.org/

http://www.jedec.org/
http://www.linux-mtd.infradead.org/index.html
http://www.linux-mtd.infradead.org/index.html
http://www.linux-mtd.infradead.org/index.html
http://www.linux-mtd.infradead.org/index.html
http://www.linux-mtd.infradead.org/index.html
mailto:linux-mtd@lists.infradead.org
mailto:linux-mtd@lists.infradead.org
mailto:linux-mtd@lists.infradead.org
https://git.kernel.org/
https://git.kernel.org/

Credits

• Texas Instruments Inc.

• The Linux Foundation

Q & A

Thank You!

