
Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Debugging Tricks with Apache HTTP Server
2.4

Jeff Trawick

http://emptyhammock.com/

trawick@emptyhammock.com

April 7, 2014

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Get these slides...

http://emptyhammock.com/projects/info/slides.html

http://emptyhammock.com/projects/info/slides.html

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Table of Contents

1 Introduction

2 What kinds of issues encountered

3 Using tools to look inside the web server

4 Looking from the outside

5 What if you build the code differently

6 Compare with httpd 2.2

7 References and further reading

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Introduction — Who am I?

I’ve worked at

several large corporations, for over two decades
my own one-person company, Emptyhammock, for the last
two years

I’ve worked on

several products which were primarily based on or
otherwise included Apache HTTP Server
lower-level networking products
web applications

I’ve debugged many customer and user problems over the
years.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Introduction — What will we attempt to cover?

Touch on all the basics.

Describe all the new httpd 2.4 debugging features.

Summarize the techniques which are different with httpd
2.2.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

What kinds of issues encountered

Crash

Hang of server

Stall of individual requests

Termination

Bad response time

Limited concurrency
without problem
symptoms

High CPU

High memory

High consumption of other
pooled resources

Incorrect output - wrong
transformation

Incorrect output -
missing/bad protocol
element

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Non-problems

Validate behavior of new software/configuration

Understand steady-state behavior for baseline when
something is wrong

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Using tools to look inside the web server

Logging (the information itself, the timestamp, information
about other processing at about the same time)

OS-level tools (view use of resources, whether discrete
items like files or continuous like CPU)

CPU-, code-level tools (determine what code is running
frequently, what is running for the request, analyze
memory references, walk through the processing of a
request, etc.)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Careful with logging!

As you increase the level of logging, you increase the chances
that private data will be logged.

Passwords, session keys, etc.

Modules/log configurations of particular interest:

mod dumpio, mod log config when configured to log
certain request or response header fields

mod log forensic

http (the built-in module) when configured at higher trace
levels

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Logging

Error log

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Error log records

Configurable content

Fields dropped when information is unavailable

Third-party modules can implement their own fields

Typical message:

[Sun Oct 28 13:37:27.676386 2012] [:error]

[pid 14340:tid 140625844377344] [client 127.0.0.1:50837]

mod_wsgi (pid=14340): Target WSGI script

'/home/trawick/myhg/apache/documents/AC20

12EU/lookup.wsgi' does not contain WSGI

application 'application'.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Hiding error log fields

The ErrorLogFormat directive can limit which fields are logged, but you could implement post-processing
to remove fields as appropriate for what you are debugging.

My own silly mechanism:

$ grep Accept-Ranges logs/error_log

[Thu Apr 03 07:26:49.605322 2014] [http:trace4] [pid 13680:tid 140130244732672] http_filters.c(837): [client 192.168.1.207:60141] Accept-Ranges: bytes

$ grep Accept-Ranges logs/error_log | nots.pl

[http:trace4] [pid 13680:tid 140130244732672] http_filters.c(837): [client 192.168.1.207:60141] Accept-Ranges: bytes

$ grep Accept-Ranges logs/error_log | nots.pl | nomodlevel.pl

[pid 13680:tid 140130244732672] http_filters.c(837): [client 192.168.1.207:60141] Accept-Ranges: bytes

$ grep Accept-Ranges logs/error_log | nots.pl | nomodlevel.pl | nopidtid.pl

http_filters.c(837): [client 192.168.1.207:60141] Accept-Ranges: bytes

$ grep Accept-Ranges logs/error_log | nots.pl | nomodlevel.pl | nopidtid.pl | noclient.pl

http_filters.c(837): Accept-Ranges: bytes

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Detailed logging only for specified client IP

LogLevel info

<If "%{REMOTE_ADDR} =~ /127.0.0/">

LogLevel trace8

</If>

Only works once request processing has reached a certain
point. Connection-level issues which occur before that
point won’t be logged.

Prior to 2.4.4, this expression needed to be placed inside a
Location container to be effective.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Detailed logging for problematic requests

LogLevel info

<Location /problem/>

LogLevel trace8

</Location>

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

(Mostly) HTTP layer logging at different levels

[core:trace5] Request received from client: GET / HTTP/1.1

[http:trace4] Headers received from client:

[http:trace4] Connection: keep-alive

[http:trace4] Cache-Control: max-age=0

[http:trace4] User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.19 (KH...

[http:trace4] Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

[http:trace4] Accept-Encoding: gzip,deflate,sdch

[http:trace4] Accept-Language: en-US,en;q=0.8

[http:trace4] Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

[http:trace4] If-None-Match: \\"2d-4b1922bade1c0\\"

[http:trace4] If-Modified-Since: Sat, 12 Nov 2011 23:41:03 GMT

[http:trace3] Response sent with status 304, headers:

[http:trace5] Date: Tue, 06 Nov 2012 12:18:57 GMT

[http:trace5] Server: Apache/2.4.4-dev (Unix) OpenSSL/1.0.0e mod_wsgi/3.4 Python...

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod log debug

Configurable debug logging mechanism using new
LogMessage directive.

Different ways to think of it:

Generate custom trace or error messages for processing of
interest to you.
Track interesting values as they change (or not) during
request processing.

Conditional expression support with access to dynamic
values is provided by the new ap expr support.

http://httpd.apache.org/docs/2.4/expr.html

http://httpd.apache.org/docs/2.4/expr.html

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod log debug – sample configuration

Log some module's request note at all phases

of processing (but only if set)

<Location />

LogMessage "%{note:mod_your_debug}" hook=all \

"expr=-T %{note:mod_your_debug}"

</Location>

Log when a location is requested as a subrequest

<Location /app/dash/>

LogMessage "subrequest to /app/dash/" \

hook=type_checker "expr=-T %{IS_SUBREQ}"

</Location>

Log when a particular error is encountered

LogMessage "Timeout from %{REMOTE_ADDR}" \

"expr=%{REQUEST_STATUS} = 408"

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod dumpio

This is a way to trace the raw, unencrypted data exchange
into the error log.

A packet trace is usually preferable, but in some
environments it is simpler to modify the httpd
configuration to enable this module than it is to capture
packets.

Also, if the person analyzing diagnostic data won’t have
access to server keys, a packet trace can’t be used to
understand most application-layer issues.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod dumpio configuration

LogLevel info dumpio:trace7

DumpIOInput On

DumpIOOutput On

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod dumpio output

You can see I/O operations on input as well as input and
output data.

dumpio_in [getline-blocking] 0 readbytes

dumpio_in (data-HEAP): 20 bytes

dumpio_in (data-HEAP): GET /dir/ HTTP/1.1\r\n

dumpio_in [getline-blocking] 0 readbytes

dumpio_in (data-HEAP): 22 bytes

...

dumpio_in (data-HEAP): Connection: keep-alive\r\n

extraneous information removed

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Catching requests which do not finish

(presumably due to a child process crash, though you could
potentially identify hung requests if you don’t use mod status)

LoadModule log_forensic_module modules/mod_log_forensic.so

ForensicLog logs/forensic.log

This logs the start and end of the request along with all of the
request headers.

+UJggYn8AAQEAAAs1da4AAAAA|GET / HTTP/1.1|Host...

-UJggYn8AAQEAAAs1da4AAAAA

check_forensic will scan the log and determine which
requests didn’t finish cleanly.
Compare with mod whatkilledus, described later.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Where did that error message come from?

module id in error log:
[core:info] [pid 4373:tid 140043736946432] ...

AH00128: File does not exist: ...

whoops, missing module id:
... [:info] [pid 8889:tid 140363200112416] mod_wsgi

(pid=8889): Initializing Python.

In this case it is obviously mod wsgi, but it isn’t always that
easy. (FWIW, the fix is in mod wsgi issue 292.)
... [:error] [pid 14883:tid 140625458312960] 1

... [:error] [pid 14883:tid 140625458312960] 2

... [:error] [pid 14883:tid 140625458312960] 3

... [:error] [pid 14883:tid 140625458312960] 4

(That was mod wsgi logging stderr from a script.)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Where did that error message come from?

The module id in the error log records is your hint on
controlling the log level to see or hide the message.

core:info Configure a specific LogLevel for module core to
see or hide this.

:error No module is available, so this log message can’t
be controlled with a module-specific LogLevel.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod backtrace feature to identify message source

Consider this if no module id is available or you need to know
the caller of a utility function that logged a message.

mod backtrace has the capability of adding a backtrace to
error log messages in certain conditions.

ErrorLogFormat ... [%{/AH00128/}B] ...

If the search string appears in the message, a
mini-backtrace will appear as an additional field in the
error log record.

... [0x4453dd<ap_run_handler<ap_invoke_handler<

ap_process_async_request<ap_process_request] ...

AH00128:...

http://emptyhammock.com/projects/httpd/diag/

http://emptyhammock.com/projects/httpd/diag/

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Looking from the outside

examining resource use

tracing activity

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Resource use

top/iostat/vmstat/etc. (even ps)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

System call trace

strace/truss/dtruss

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Higher level tools

Brendan Gregg’s DTrace Toolkit, at
http://www.brendangregg.com/dtracetoolkit.html

The DTrace Toolkit has been around for a while and
contains a number of analysis and reporting scripts based
on DTrace.

sysdig, at http://www.sysdig.org/

sysdig was just announced last week. I haven’t played with
it much yet; the Lua scripts, chisels, appear to operate at
roughly the same layer as the scripts in the DTrace
Toolkit, and a lower-level command provides the basic
collection features.

http://www.brendangregg.com/dtracetoolkit.html
http://www.sysdig.org/

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

A simple DTrace Toolkit example...

$ sudo /usr/share/dtrace/toolkit/procsystime -n httpd

^C

Elapsed Times for processes httpd,

SYSCALL TIME (ns)

...

accept4 25569461

close 29081544

stat 36630193

munmap 41668446

writev 48378858

shutdown 71471901

gettimeofday 97454962

write 1000753076

select 8131189175

_umtx_op 22781598217

kevent 32804433802

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

A simple sysdig example...

$ sudo sysdig -n 1000 -c topfiles_bytes proc.name=httpd

Bytes Filename

9.27KB /home/trawick/inst/24-64/logs/forensic.log

960B /home/trawick/inst/24-64/logs/access_log

494B /home/trawick/inst/24-64/manual/mod/module-dict.html

(I forgot that I had enabled mod log forensic...)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

DTrace one-liners, on several platforms

Jeff, this is where you view the document in the browser.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Looking inside the process with a debugger

Basic information: Backtraces

gdb

Most platforms (even Windows, using MinGW gdb on
MinGW build of httpd)
Basic use:

gdb /path/to/httpd pid-or-corefile

(gdb) thread apply all bt full

(but other commands may be useful too)

pstack

Solaris (I learned through bad experiences to pretend that
pstack isn’t available on Linux)
Use:

pstack pid-or-corefile

(but pflags and pldd information is also good)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Getting more debugging information

The backtraces (with variables if available) are most
important, but more information is available if you ask for
it.

gdb, more details:

(gdb) info sharedlibrary

(gdb) info threads

(gdb) thread apply all bt full

(gdb) thread apply all x/i $pc

Solaris /proc tools:

pstack 13579

pldd 13579

pflags 13579

pmap 13579

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

httpd-specific gdb tricks

(gdb) source /path/to/2.4.x/.gdbinit

(gdb) dump_table r->headers_in

[0] 'Host'='127.0.0.1:8080' [0x7f8094003cb6]

[1] 'Connection'='close' [0x7f8094003cd4]

(gdb) dump_brigade b

dump of brigade 0x7f8094007320

| type (address) | length | data addr | contents | rc

--

0 | FILE (0x7f8094000b08) | 45 | 0x7f8094000ba8 | [**unp... | 1

1 | EOS (0x7f8094000c48) | 0 | 0x00000000 | | n/a

end of brigade

Use of these macros requires some familiarity with the httpd
implementation or module programming interface.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Example output

Jeff, this is where you show ubuntu64.core.collect.gdbout and
solaris10.core.pstackout.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Umm, what does that stuff mean?

Recognize normal behavior

Determine where crash likely occurred

Determine definitively where crash occurred

(similar issues for hang)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Umm, what does that stuff mean? (cont.)

Perplexing (?) problem: Show that output to an httpd
developer and they can quickly determine the important
parts (i.e., pick the interesting thread)

or determine that there’s nothing interesting, which can be
just as important

Users typically report the least interesting thread from the
core dump, which wastes their time and ours.

Some sort of automatic annotation/explanation would be
useful.

Descriptions of normal activity
Bug numbers for backtraces that match known problems
et cetera

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Demo

Jeff, this is where you go to
http://emptyhammock.com/projects/httpd/explore/.
Try loading PR53870.pstackout and
ubuntu64.core.collect.gdbout.

http://emptyhammock.com/projects/httpd/explore/

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

What if you build the code differently

Improving general debuggability of the generated code by
affecting code generation or symbols

Enabling optional run-time checks

Enabling third-party exception hooks

Enabling third-party tracing of API hooks

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Different code generation for debugging

Adding symbols, not stripping executable

Disabling in-lining of functions for better diagnosablity

Disabling other optimization so that more variables can be
checked

Options like -funwind-table for tools like
mod backtrace to work on ARM

(huge YMMV, with architecture, OS, compiler, and
compiler/linker flags as variables)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

General debug capabilities not built in by default

Hook tracing

DTrace probes in the server (DTrace provider ap)

Exception hooks

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Hook tracing

httpd hooks are what allow different modules to handle or
otherwise affect processing of the different phases of
execution.

A module that needs to take part in a particular aspect of
connection or request processing uses a special hook
macro to save a callback pointer.

At the point where httpd core passes control to modules,
it invokes a special hook macro to continue calling module
callbacks until a failure occurs, a module elects to handle
the request, or all callbacks have been serviced (depending
on the hook).

By tracing what happens inside the hook invocation, some
types of failures can be quickly tracked to a particular
module.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Hook tracing (cont.)

httpd now provides a way for third-party code to run
during the hook macros at the following points:

Start of the hook execution
About to call a particular module’s hook function
Returned from that module’s hook function
End of the hook execution

Code inserted into the calling of different modules’ handler
functions can determine what module’s handler took
ownership of this phase of request processing and/or
caused the request to fail.

More generally, if some mysterious error occurs at any
phase of processing, such as the notorious 500 with no log
message, hook tracing could pinpoint the module.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Enabling hook tracing

Configure argument --enable-hook-probes causes
ap_hook_probes.h to be included in files with hook
definitions, making special macros active.

ap_hook_probes.h isn’t part of httpd, so it needs to be
copied into include or located via CPPFLAGS.

Any code invoked by the macros in ap_hook_probes.h

has to be compiled into the server, so this can be handled
by statically linking a module into the server if the desired
logic can’t be implemented completely in a macro.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Enabling hook tracing (cont.)

Build mechanism for including this code

export CPPFLAGS=-I/path/to/module

./configure --enable-hook-probes \

--with-module=debugging:/path/to/module/mod_foo.c \

--other-args

After httpd is built, httpd -l will show mod_foo.c as
built-in (like core.c and a few others).

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod hook ar — Experimental hook tracer

Must be built into the server as with other hook trace
code.

Sets a request note to information about the active
module while a hook is active.

Sets a request note to information about the failing
module if a hook returns an error.

Logging the RequestFailer note in the access log:

127.0.0.1 ..."GET /cgi-bin/printenva" \

404 215 mod_cgid.c/404/handler

Can log the name of the ActiveModule note in the case
of a crash:

... [pid 30568:tid 140369329334016] Crash state: \

mod_crash.c/handler

Download from http://emptyhammock.com/downloads/

http://emptyhammock.com/downloads/

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Possible directions with hook tracers

How much performance degradation?

Can this be used to implement DTrace probes?

Can a built-in module provide a simple API for loadable
hook debug modules?

Will someone write a script to help with generating the
right set of macros based on the hooks that need to be
instrumented?

(if indeed this is interesting to anyone)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

DTrace probes

httpd-specific probes enabled via --enable-dtrace was
the goal for 2.4, but only part of the code was committed,
and it hasn’t been kept up to date with new hooks.

Someone needs to take interest in getting it working on
one of the several platforms with DTrace.

Existing DTrace providers can certainly help understand
httpd processing.

The pid provider provides great info but it is problematic
with httpd because you have to specify a particular
process id.

Has anyone tried to use mod dtrace with 2.4?

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Exception hooks

sig_coredump() is the handler for fatal signals with
httpd on Unix since the httpd 1.3 days.

It changes to the configured core dump directory and
re-throws the signal, causing the process to exit; at this
point the system (possibly) creates a core file.

If the --enable-exception-hook configure option was
specified, sig_coredump() will also call exception hooks.

This allows third-party modules to clean up some resource
or save diagnostic information in the event of a crash.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Example exception hook module —
mod whatkilledus

Like mod log forensic, this module saves information about
the client request in an early request processing hook.

Unlike mod log forensic, the info is kept in memory during
the life of the request, and only logged if a crash occurs.

Also, if mod backtrace is loaded it will capture a
backtrace for the crashing thread.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod whatkilledus report

**** Crash at 2012-09-06 14:48:23

Process id: 23368

Fatal signal: 11

...

/home/trawick/inst/24-64/bin/httpd:ap_run_fatal_exception+0x5b 0x430562

...

/home/trawick/inst/24-64/modules/mod_crash.so:0x7fecbd59e986

/home/trawick/inst/24-64/modules/mod_crash.so:0x7fecbd59ead8

/home/trawick/inst/24-64/bin/httpd:ap_run_handler+0x5b 0x45008e

/home/trawick/inst/24-64/bin/httpd:ap_invoke_handler+0x173 0x450966

/home/trawick/inst/24-64/bin/httpd:ap_process_async_request+0x264 0x46c46d

/home/trawick/inst/24-64/bin/httpd:0x468dc4

/home/trawick/inst/24-64/bin/httpd:0x468fb3

/home/trawick/inst/24-64/bin/httpd:ap_run_process_connection+0x5b 0x45d68b

...

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod whatkilledus report (cont.)

Request line (parsed):

GET :10080 /crash/

Request headers:

Host:127.0.0.1%3a10080

User-Agent:ApacheBench/2.3

Accept:*/*

Client connection:

127.0.0.1:44883->127.0.0.1:10080 (user agent at 127.0.0.1:44883)

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

mod whatkilledus notes

mod whatkilledus and mod backtrace can actually work
well on Windows, with great backtraces if the web server
.pdb files are available. Uhhh, I don’t have mod backtrace
working for 64-bit httpd on Windows yet.

The original versions of mod whatkilledus and
mod backtrace worked somewhat differently:

mod backtrace and mod whatkilledus acted independently.
Neither supported Windows, and mod backtrace supported
fewer Unix-y platforms.
mod whatkilledus had no mechanism to filter out sensitive
information.

http://emptyhammock.com/projects/httpd/diag/

http://emptyhammock.com/projects/httpd/diag/

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Comparison with httpd 2.2 — error log

Error messages

No module id, pid, thread id, etc. unless the module
generating the message adds it explicitly.
No control over the format.
No sub-second timestamps.
No traceXXX levels
Some messages just aren’t present, because even LogLevel
debug would be too noisy, or separate log files are used
(mod rewrite) which have to be managed independently.
No per-module LogLevel, no per-dir LogLevel (which is
what allows per-client LogLevel)
Custom scripting can be used to reduce the output to
something readable, though nothing can be done about
the volume, and that may necessitate a different scheme
for rotating logs during problem determination.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Comparison with httpd 2.2 — other logs

mod log debug isn’t available.

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

Recap of Jeff’s toys

Explore, collect.py

mod backtrace and mod whatkilledus

mod hook ar

pgfiles.py (not mentioned; shows open files for a process
group, organized to show which files are shared by
different processes)

nots.pl, nomodlevel.pl, etc.

Available from

http://emptyhammock.com/projects/ and/or
http://emptyhammock.com/downloads/ (or ask Jeff
directly for nots.pl et al)

http://emptyhammock.com/projects/
http://emptyhammock.com/downloads/

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

httpd materials

httpd debugging guide in the reference manual
http://httpd.apache.org/dev/debugging.html

module debugging guide from Cliff Wooley
http://www.cs.virginia.edu/˜jcw5q/talks/apache/
apache2moddebugging.ppt

httpd debugging guide from Prefetch Technologies
http://prefetch.net/articles/debuggingapache.html

In PDF, click on the title or cut and paste the URL.

http://httpd.apache.org/dev/debugging.html
http://www.cs.virginia.edu/~jcw5q/talks/apache/apache2moddebugging.ppt
http://prefetch.net/articles/debuggingapache.html

Debugging
Tricks with

Apache HTTP
Server 2.4

Jeff Trawick

Introduction

What kinds of
issues
encountered

Using tools to
look inside the
web server

Looking from
the outside

What if you
build the code
differently

Compare with
httpd 2.2

References
and further
reading

More general information (all from Joyent?)

The DTrace Book
(http://www.dtracebook.com/index.php/Main Page)

DTrace one-liners from Brendan Gregg
(http://www.brendangregg.com/DTrace/
dtrace oneliners.txt)

“And It All Went Horribly Wrong...” talk from Bryan
Cantrill
(http://www.joyent.com/content/06-developers/
01-resources/13-and-it-all-went-horribly-wrong-
debugging-production-systems/debugging-production-
systems.pdf)

In PDF, click on the title or cut and paste the URL.

http://www.dtracebook.com/index.php/Main_Page
http://www.brendangregg.com/DTrace/dtrace_oneliners.txt
http://www.joyent.com/content/06-developers/01-resources/13-and-it-all-went-horribly-wrong-debugging-production-systems/debugging-production-systems.pdf
http://www.joyent.com/content/06-developers/01-resources/13-and-it-all-went-horribly-wrong-debugging-production-systems/debugging-production-systems.pdf

	Introduction
	What kinds of issues encountered
	Using tools to look inside the web server
	Looking from the outside
	What if you build the code differently
	Compare with httpd 2.2
	References and further reading

